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Abstract

We construct new perfect one-factorizations of the complete graphs Kj2163
and K29792.

1 Introduction

A 1-factorization of the complete graph K3, is a partition of the edge-set of Ko,
into 2n — 1 1-factors, each of which contains n edges that partition the vertex-set
of Ks,. A perfect 1-factorization is a 1-factorization in which every pair of distinct
1-factors forms a Hamilton cycle.

It has been conjectured that a perfect 1-factorization of K, exists for all
n. Two infinite classes of perfect 1-factorizations of K2, are known to exist.
When 2n = p + 1 (where p is prime), it is well-known that K3, has a perfect
1-factorization. When 2n = 2p (where p is prime), Anderson [3] and Naka-
mura [13, 14] constructed perfect 1-factorizations of K3, independently, and it
is known that these are isomorphic [8]. In addition to the two infinite fami-
lies of perfect 1-factorizations, we only know of perfect 1-factorizations of sev-
eral other orders. Perfect 1-factorizations of K¢, K28, K244 and K344 were found .
by Anderson [1, 2, 4]. Perfect 1-factorizations of K3 were found by Seah and
Stinson [16] and Kobayashi, Awoki, Nakazaki and Nakamura [9], independently.
A perfect 1-factorization of K5 was found by Ihrig, Seah and Stinson [7]. A
perfect 1-factorization of K49 was found by Seah and Stinson [17]. Perfect 1-
factorizations of Kyss; and Kesgp were found by Kobayashi and Kiyasu [10]. Per-
fect 1-factorizations of K26, K170, K730, K1370, K1850, K 2198 and K3j26 were found
by Dinitz and Stinson [6). Most of these perfect 1-factorizations have been con-
structed by the method of starters. We note that the smallest order of K3, for
which a perfect 1-factorization is not known to exist is 2n = 52.

*Semiconductor Research Institute



BE LIE#® Vol.3 Nel

In this paper, we construct perfect 1-factorizations of K565 and Kaog7go by.
the same method as the case 2n = 28,244,344,1332,6860; these are the case
2n = p™ + 1, where p is prime and p™ = 3 (mod 4).

2 Semi-regular 1-factorizations

Let p be a prime number and m be a natural number such that p™ = 3 (mod 4).
We put ¢ = p™,s = (¢ —1)/2 and 2n = ¢+ 1. GF(q) denotes the Galois field
with g elements. K3, = (V, E) denotes the complete graph on 2n vertices, and

V=GF(q)u {oo}, E= {{x,y} | z,yeV,z # y}'
Let w be a primitive element of GF(g) and t be an odd integer such that
0 <t < 2s. We define a starter 1-factor Fp:

Fo = {{0¥,0"*%}]10< i < s -1} U {{0, 00}}.
For any g € GF(q),

Fg = Fp+yg
= {{w¥+g,0*% g} 0<i<s—1}U{{g,00}}.

is a 1-factor which is induced by the starter Fy. Then
F(w')={F; | g € GF(¢)}

is a 1-factorization of K,.

Let S, be the symmetric group of the set of all vertices of K. on. Clearly if
0 € Sa2n, then o induces a permutation on the set of all edges of K3, and on the
set of all 1-factors of K3,. We also use o for these induced permutations. Now
we define a symmetry group of a 1-factorization F:

Sym(F) = {o € Sa. | o(F) = F}.

Theorem 1. Sym(F(w?)) is transitive and of order at least ¢(q¢ — 1)/2.

Proof. For any g € GF(q), we define a permutation on V:

_{ y+g (veGF(g)
nw={ V40 BESH®
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It is easy to show that for any ¢ € GF(q) and y € GF(q),

T9(Fy) = Fy4q,

hence
7, € Sym(F(w?)).
Since 7, # Ty (9 # 9') and Tg+g' = TgTg (9,9 € GF(q)), the additive group of

GF(q) is embedded in Sym(F(w')), so Sym(F(w?)) has a subgroup of order g.
For any g € GF(q)* = GF(q) \ {0}, define a permutation g, on V:

a;(y) _ { 9y (y€ GF(9))

oo (y=o00).

It is easy to show that for any g € GF(q)*? = {22 | z € GF(q)*} and y € GF(q),
we have

og(Fy) = Fygy,
hence
o4 € Sym(F(w?)).

Since 04 # oy (9 # ¢') and o4y = 0404 (9,9’ € GF(g)*?), the multiplicative
group of GF(q)*? is embedded in Sym(F(w?)), so Sym(F(w')) has a cyclic sub-
group of order (¢ — 1)/2.

Thus ¢ and (g — 1)/2 divide the order of Sym(F(w?)), so ¢(g — 1)/2 divides
the order of Sym(F(w?)), since ¢ and (g — 1)/2 are relatively prime.

Take any two 1-factors Fy and F} of F(w'). We have

Th-g(FQ) = F,

so Sym(F(w?)) is transitive. O

Let F, and Fj be 1-factors of Kopn. If
F,UF,=LiUL;U...U L,

where L; is a cycle with length I; (1 <i<k),and ly +l2+ ...+ lx = 2n, we say
the cycle structure of F, U F}, is of type (I1,1z,...,1). A 1-factorization F of K2,
is semi-regular if and only if for any 1-factors Fy, Fy, F;, Fj in F (g # h,i # j),
the cycle structures of Fy, U Fj, and F; U F; are identical.
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Theorem 2. [2,4, 5, 12] F(w') is @ semi-regular 1-factorization of Kg,.

Proof. For any g,h € GF(q) (g9 # h), we consider the cycle structure of
F,UF}. Note that the cycle structure of F, U F}, is the same as the cycle structure
of a(Fy U F), where a € Sym(F(w?)).

- We know that either (g — h) € GF(q)*? or (h — g) € GH(q)*?, since —1 ¢
GF(g)*2. We may now assume that (h — g) € GF(g)*2. We have

T'fg(Fy UF,)=FUF,

and
O(h-g)-1(FoU Fr_g) = Fo U Fy.

Thus the cycle structure of F, U F}, is the same as the cycle structure of Fy U F.
Therefore F(w?) is semi-regular. O

3 Perfect 1-factorizations

A 1-factorization F(w') is perfect if the cycle structure of Fy U F} is of type (2n).
We apply this so as to find new perfect 1-factorizations. We checked perfectness
of F(w!), F(w3), F(w%),... until the first perfect 1-factorization was found. The
search was stopped at the first success. SUN4/390 installed at University of
Shizuoka was used. CPU time is written in parentheses. The results obtained are
as follows. . '

In case p = 11 and m = 3, let w be a primitive element of GF(113) with a
minimal polynomial z3 4 2% + 5. Then F(w7) is a perfect 1-factorization of K33,
(15 seconds) [10].

In case p = 19 and m = 3, let w be a primitive element of GF(193) with a
minimal polynomial #3 + 22 + 16. Then F(w!?7) is a perfect 1-factorization of
Kesco (103 minutes) [10).

In case p = 23 and m = 3, let w be a primitive element of GF(23%) with
a minimal polynomial 23 4+ 22 + 16. Then F(w!®) is a perfect 1-factorization of
K12168 (60 minutes).

- Incase p = 31 and m = 3, let w be a primitive element of GF(313) with
a minimal polynomial z3 + z + 28. Then F(w3™) is a perfect 1-factorization of
Kig792 (6424 minutes). '

The last two perfect 1-factorizations are newly obtained.
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