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Abstract

Dudeney’s round table problem was proposed about one hundred years ago.
It is already solved when the number of people is even, but it is still unsettled
except only few cases when the number of people is odd.

In this paper, another solution of Dudeney’s round table problem is given
when n = p+2, where p is an odd prime number such that 2 or —2 is a primitive
root of GF(p). The method of constructing the solution is new.

1 Introduction

A Dudeney set in K, is a set of Hamilton cycles with the property that every path of length
two (2-path) in K, lies on exactly one of the cycles. We call the problem of construction a
Dudeney set in K, for all natural numbers “Dudeney’s round table problem”.

A Dudeney set in K,, has been constructed when n is even [3]. In the case n is odd, a
Dudeney set in K,, has been constructed only when

(1) n = 2% +1 (k is a natural number) [4],
(2) n =p+2 (pis an odd prime number and 2 is a primitive root of GF(p)) [1],
(3) n=p+2 (pis an odd prime number and —2 is a primitive root of GF'(p)) [2],

and some sporadic cases [1]. To construct a Dudeney set in K, for a general odd integer
n > 0, the case n = p+ 2 (p is an odd prime number) plays an important role. But in the
case, it has been constructed only when (2) and (3).

The method of constructing Dudeney sets in paper [2,3] is complex and it is difficult to
extend to other cases. In this paper, we develop a new method of constructing Dudeney
sets that is successful in both case (2) and case (3). The method is simple and elegant, so
it is also possible to apply it to other cases with n = p + 2.

2 Preliminaries

Put n; = p+ 1, where p is an odd prime number, and r = (p — 1)/2. We denote by
K,, = (Va,, En,) the complete graph on ny vertices, where V,,, = {0,1,2,---,p—1}U{o0} =
Z, U {0} is the vertex set (Z, is the set of integers modulo p).

For any integer i, 0 < ¢ < p — 1, define the 1-factors

F; = {{c0,i}} U {{a,b} € E,, | a,b# 00,a+ b= 2i (mod p)}
I; = {{o0,i/2}} U{{a,b} € E,, | a,b # 00,a+b =1 (mod p)}.
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Note that F; = 2I;, where multiplication is considered modulo p and we define a x co = oo
(a #0).

Let o be the vertex-permutation (c0)(012 ... p—1),andput T ={0? |0< j < p—1}.
When C is a set of cycles or circuits in K, deﬁne C={C"|Cel,T€ E}

For any edge {a,b} in K,,, we define the length d(a, b):

d(a,b>={b“a(m0d”’ (a,b # o)

00 (otherwise),
where we define that lengths c;, ¢ are equal if ¢; = ¢3 or ¢; = —c2 (mod p).
Aset H C Z; = Z,\ {0} is called a half-set modulo pif |H| = (p—1)/2 and HU(~H) =
zZ*.
D .
A sequence of non-zero intergers d = (dy,ds, -, d;) is called a dlfference sequence of

length ¢{. Each component d; is considered modulo p. We usually write d; satisfying —r <
d; < r. For two difference sequences d = (d1,ds,--+,d) and d' = (d},d},---,d}), we define
d=d whend, =dj,dy =dj, -, dy =d;or dy = —d},ds = —d}_,,---,d; = —d.
For an l-path P = (ag,ay, -, a;) (a; # 0o(0 <4 <)) in K,,, we define the difference
sequence of P:
d(P) = (a; — ap,as —ay, - -,a; —a;_y).

Lemma 2.1 Let Py, P> be l-paths in K, not containing co. Then d(Py) = d(P,) if and
only if Py = P for somei, 0 <i<p-—1.

We define the difference sequence of an Hamilton cycle in K, as follows. Write a
Hamilton cycle with co the first. For a Hamilton cycle

C = (00,a1,a2,-,0p),
define the difference sequence of C':
d(C) = (az —a1,a3 —ag, -+, ap — ap_1).
Lemma 2.2 Let C1,C2 be Hamilton cycles in K,,. Then d(Cy) = d(C2) if and only if
Cy = CY" for somei, 0<i<p-—1.

For a difference sequence d = (ay,as, -, ap—1) of length p—1, we call W(d) = (00,0, a;1,a;+
P 1 a;) the representative Hamilton cycle of d, if W(d) is a Hamilton cycle in K, .
A difference sequence d = (d;,ds2,--,dp—1) of length p — 1 is symmetric if d; = d,—;
(1<i<r).

We next construct the complete graph K, by adding a new vertex A to K,,,; that is, put
n=n+1=p+2 K, = (Vp,E,) and V,, = V,,, U{\}. Extend o to a permutation of V,, and
denote it also by o: 0 = (00)(A)(0123 --- p—1). Further weput ¥ = {07 |0 < j <p-1}.

Let A be a 1-factor in K, which satisfies 1 and 2:

1. FoU A is a Hamilton cycle in K,, .

2. If S is the multiset {d(a,b) | {a,b} € A}, then we have S = {00,1,2,---, 7}, i.e. A has
all lengths.
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If we insert the vertex A into all the edges in A, we get a set of 2-paths in K,,. Denote
this set by A*; that is,
A* = {(a,\,b) | {a,b} € A}.

We note that paths are undirected, i.e., (a,\,b) = (b,\,a). Fy U A* is considered to be a
circuit in K,,.

Proposition 2.3 [5] Assume h; (1 <i <) is a Hamilton cycle in K, and X{h; | 1 <i <
r} is a Dudeney set in K,,. Then

Y{FouArtu{h |1<i<T})

has every 2-path in K, ezactly once.

3 Definition of h(0)

From now to the end of this paper, we assume that p is an odd prime number, p > 19, and
that 2 or —2 is a primitive root of GF(p).

Define a Hamilton cycle h(0) in K,, as follows;
(i) When p =1 (mod 4),

h’(o) = (OO, 11 _1) _27 2a 227 _227 _23a 23, Ty _27'——1, 2T_1:0)'
(i) When p = 3 (mod 4),
h(0) = (oc0,1,-1,-2,2,22 2% —23 2% ... or=1 —27~1 ().

As h(0) contains the 1-factor Fy, we can write h(0) = Fo U G where G is a 1-factor in
Kn,.

Lemma 3.1 If S is the multiset {d(a,b) | {a,b} € G}, then we have S = {00,1,2,---,7},
i.e. G has all lengths.

4 Construction of h(1)

We would like to construct a Hamilton cycle h(1) in K, satisfying the following 2 conditions:
1. {ah(1l) | a € H} is a Dudeney set in K, for any half-set H modulo p.

2. h(1) has the 5-path (00,0,1,—1,-2,2).

We will construct h(1) only when p = 3 (mod 4). When p = 1 (mod 4), we can construct
h(1) in a similar manner.
The difference sequence d of Fy U I is

d=(1,-2,3,-4,5,-6,7,---,—(r = 1),r;r,—(r = 1),---,7,-6,5,-4,3,-2,1).
We transform it to make dy;

d, = (1, -2, -1,4,-5,6,-7,---,(r=1),-r;~-r,(r—=1),---,-7,6,-5,4,-1,-2,1).
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The difference sequence (—2,-1,4) is in d;. If we multiply it by —3~!, then we have
(2-371,371,—4 - 37!) which is in the first half of d;. Indeed, let b be an integer with
—r < b < r satisfying b = 37! (mod p), then b is even (b = (p = 1)/3)) and we have
(2-371,371,-4-371) = (—(b—1),b,—(b+ 1)), where the equality is considered as difference
sequences.

Next, we transform d; to make dy: change (—(b—1),b,—(b+1)) to (—(b—1),—1,(b+1))
and change the sign from the next element to r, and then make ds symmetric, i.e.,

dy = (1,—2,—1,4,—5,6,—7,---,—(b—1),—1,(b+1),—(b+2) ( 1),r;
r—(r = 1), =(b+2), (b+1),~1,—(b—1),---, ~7,6, =54, ~1, -2, 1).

Let h(1) be the representative Hamilton cycle of dy, i.e., h(1) = W(dy). Then h(1) =
(00,0,1,—-1,-2,2,--+) is a Hamilton cycle and it satisfies condition 2.

As Y{a(Fo U L1) | @ € H} (H is any half-set modulo p) is a Dudeney set in K, ,
{ad | a € H} has the difference sequences of all 2-paths (a,b,c) in K, with a,b,¢ # oo
exactly once. Since

_3_1(_23 _1’4) = ('—(b - l)a ba "(b + 1))

-371(-2,3,-4) = (-=(b—1),-1,(b+ 1)) or —(=(b—1),—1,(b+ 1)),

all difference sequences in {ad | a € H} of length 2 and all difference sequences in {ad, | a €
H} of length 2 are the same. Therefore, we have Prop. 4.1 which shows that h(1) satisfies
condition 1.

Proposition 4.1 For any half-set H modulo p, {ads | a € H} has the difference sequences
of all 2-paths (a,b,c) in K,, with a,b,c # oo ezxactly once.

5 Construction of a Dudeney set

Let G be the 1-factor defined in §3. Insert the vertex X into all edges in G and define G*
same as before; that is,
={(a,A,0) | {a,b} € G}.

Put h(a) = ah(1), where a is an integer # 0. Since G has all lengths (Lemma 3.1), we
obtain by Prop. 2.3,

Proposition 5.1 Let H be a half-set modulo p. Then
S({Fy UG} U {h(a) | a € H})
has every 2-path in K,, ezxactly once.

We leave one A in FUG™ and scatter the remaining r As over {h(a) | a € H} to construct
a Dudeney set in K,
Put H; = {(—2) [ 0<i<r—2} Ash(l) has a 3-path (1,—1,-2,2), h((—2)?) has a
3-path ((-2)?, —(=2)*, =2(-2)%,2(~2)). Denote h((=2)*)* the cycle in K, obtained from
h((—2)%) inserting X into the center of this 3-path, i.e., inserting A between —(—2)* and
—2(—2)~
h(1) has a 3-path (00,0,1,—1). If G has {r,0}, put Hy = H; U {r} and denote h(r)*
the cycle obtained from h(r) inserting A into the center of the 3-path (00,0, r, —r). If G has
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{-r,0}, put Hyp = H; U{-r} and denote h(—r)* the cycle obtained from h(—r) inserting A
into the center of the 3-path (00,0, —7r,7).

Denote h(0)* the cycle obtained from h(0) inserting ) into the center of {co,1}. Then
we have the following Proposition which is our main theorem.

Proposition 5.2
D = 2({h(0)*} U {h(a)* | a € Ho})

is a Dudeney set in K,,.

6 Example

Put p =19, then n = 21, r = 9 and 2 is a primitive root of GF(p). We have

h(0) = (00,1,-1,-2,2,4,—-4,-8,8,-3,3,6,—6,7, —7,5, 5,9, -9, 0)
d=(1,-2,3,-4,5—6,7,-8,9;9, 8,7, —6,5,—4, 3, 21)

di = (1,-2,—-1,4,-5,6,-7,8,-9; -9,8,~7,6,—5,4, -1, -2, 1)
dy = (1,-2,—1,4, -5, 1,7,—8,9,9,—8,7,-1,—5,4,—1,—2,1)
h(1) = (0,0,1,—-1,-2,2,-3,—4,3,-5,4,-6,5,—7,—8,6,-9,9,7,8).

Put Hy = HiU{-r} = {1,-2,4,-8,-3,6,7,5,—9}. The following r + 1 cycles and their
rotations by ¥ make a Dudeney set in K,,.

h(0)* = (00, A, 1,—1,-2,2,4,—4,-8,8,-3,3,6,-6,7,—7,5,—5,9, -9, 0)
h(1)* = (0,0,1,-1,A,-2,2, -3, —4,3,-5,4,—6,5,—7, —8,6,—9,9,7, 8)
h(=2)* = (00,0,-2,2,\,4,—4, -
h(4)* = (00,0,4,—4,\, 8,8, -
h(-8)* = (00,0,-8,8,),—3,3, -
h(-3)* = (00,0,-3,3,,6,—6, -
h(6)* = (0,0,6, —6,\,7,—7,- -
h(7)* = (00,0,7,-7,\,5,—5, - -
h(5)* = (c0,0,5,-5,1,9, -9, ---
h(=9)* = (c0,0,),-9,9,—1,1,---
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