博士論文

二酸化硫黄等価体を用いるスルホニル基および スルフィニル基含有化合物合成法の開発

本論文は静岡県立大学大学院薬食生命科学総合学府薬科学専攻博士論文である

2019年1月

田中寛康

Development of synthetic methods of sulfonyl and sufinyl group-containing compounds using a sulfur dioxide surrogate

January, 2019

Hiromichi Tanaka

目次

略語表......5

第七節

序論......7

7	スルホニル基・スルフィニル基含有化合物	第一節
	二酸化硫黄ガスの利用	第二節
9	二酸化硫黄等価体	第三節
11	二酸化硫黄等価体の利用	第四節
	本研究の概要	第五節

第一章	二酸化硫黄等価体を用いる環状スルホンアミドおよび スルフィンアミド類の一段階選択的合成法の開発	24
第一節	スルホンアミド類の合成法	24
第二節	本研究の目的	26
第三節	反応条件の検討	27
第四節	基質一般性の検討	
第五節	反応機構解明研究	
第六節	まとめ	

第二章	二酸化硫黄等価体を用いる対称ジアリールスルホン	
	合成法の開発	55
the test	ジアリーリフリナン街の人子社	~ ~
弗一 即	シアリールスルホン類の合成法	
第二節	本研究の目的	
第三節	反応条件の検討	57
第四節	基質一般性の検討	64
第五節	反応機構解明研究	70
第六節	分子内反応への応用	78

結論

実験項	
引用文献	134
論文目録	138
謝辞	139

略語表

Ac	acetyl
acac	acetylacetonate
Ad	adamantyl
Ar	aryl
Bn	benzyl
bpy	bipyridine
Bu	butyl
cat.	catalytic
cod	cyclooctadiene
Су	cyclohexyl
DABCO	1,4-diazabicyclo[2.2.2]octane
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-dichloroethane
DMAP	4-dimethylaminopyridine
DMEDA	1,2-dimethylethylenediamine
DMF	N, N^2 dimethylformamide
DMPU	N, N^2 dimethylpropyleneurea
DMSO	dimethyl sulfoxide
DPPB	1,4-diphenylphosphinobutane
DPPE	1,2-diphenylphosphinoethane
DPPF	1,1'-bis(diphenylphosphino)ferrocene
DPPP	1,3-diphenylphosphinopropane
eq.	equivalent
Et	ethyl
EWG	electron withdrawing group
h	hour
i	iso
Me	methyl
MS4Å	molecular seives 4Å
n	normal
NBS	N-bromosuccinimide
NCS	N-chlorosuccinimide
Ph	phenyl
PMP	p-methoxyphenyl
Pr	propyl
rt	room temperature

t	tertiary
TBAB	tetrabutylammonium bromide
TBAC	tetrabutylammonium chloride
TBAI	tetrabutylammonium iodide
TEAC	tetraethylammonium chloride
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TMAC	tetramethylammonium chloride
TMS	trimethylsilyl
TriPhos	1,1,1-tris(diphenylphosphinomethyl)ethane
Ts	<i>p</i> -toluenesulfonyl
XantPhos	$4, 5\mbox{-}bis (diphenyl phosphino)\mbox{-}9, 9\mbox{-}dimethyl xan thene$

第一節:スルホニル基・スルフィニル基含有化合物

硫黄原子は、周期表同族の酸素原子とは異なる特徴的な性質をもつ。例えばその電 気陰性度(2.58)は酸素原子に比べ小さく、炭素原子とほぼ同程度である。また硫黄原子 には d 軌道が存在するため、2 価・4 価・6 価の原子価をとれる。したがって含硫黄化 合物は、対応する含酸素化合物とは異なる性質を示すとともに、多様な化合物が安定 に存在することができる。

硫黄原子を含む官能基の中でも、スルホニル基・スルフィニル基は創薬や有機合成 化学において重要な役割を果たしている。スルホニル基は、最も大きい原子価の硫黄 原子をもつ官能基の一つであり、四面体構造をとる。また、α位のアニオンを安定化 できるといった特徴を有している。スルフィニル基はスルホニル基と同様に四面体構 造をとり、α位のアニオンを安定化できる。また硫黄原子がキラル中心となりうるた め、不斉合成やキラルスイッチによる創薬に利用されている。

このような特徴を有するスルホニル基・スルフィニル基を含有する化合物は医薬品 など多くの分野で利用されている。医薬品における含硫黄骨格の有用性を示した例と しては、抗菌薬のサルファ剤が最も有名である。その後、抗菌薬に限らず、多様な疾 患に対する医薬品にスルホニル基・スルフィニル基が導入されてきた (Figure 1)。し たがって、新薬開発において、これらの官能基の導入の検討は必須項目だと考えられ る。

Figure 1. Examples of sulfonyl- or sulfonyl-containing drugs

第二節:二酸化硫黄ガスの利用

含硫黄化合物の一種である二酸化硫黄は、沸点-10℃の刺激臭のする気体であり、 目や呼吸器に炎症や痛みを引き起こす毒性ガスである。また二酸化硫黄は火山活動や 人類の工業活動により排出されており、環境破壊を引き起こす酸性雨や四日市ぜんそ くに代表される公害の原因の一つとなっている。その一方でアルコール飲料やドライ フルーツの保存料、紙や衣料の漂白、酸化防止剤などに利用されており、人類の生活 に重要な役割を担っている物質でもある。

有機合成における二酸化硫黄の利用に焦点を当てると、有機金属試薬を用いるスル ホンおよびスルフィン酸エステルの合成¹⁾、ヘテロ Diels-Alder 反応に続く向山アルド ール型の反応によって生成したスルフィン酸エステルを経由するスルホンアミドの合 成²⁾などが報告されている(Scheme 1)。

Scheme 1. Application of SO₂(g) for organic reactions

以上のように、二酸化硫黄は我々の生活に深く関わる物質であるとともに、有機合成化学的にも非常に興味深い性質を示すことがわかる。しかし人体に有毒な気体であることは、取り扱いを誤れば、大事故につながる恐れを内包していることを意味する。 そのため、より安全に二酸化硫黄を用いる方法論の確立が望まれている。

第三節:二酸化硫黄等価体

有機合成化学において、二酸化硫黄を利用する際には、実験者が二酸化硫黄に暴露 されないための特別な安全対策を講じる必要がある。有機合成反応に二酸化硫黄を用 いる際の問題点の解決方法として、その等価体の利用が挙げられる。二酸化硫黄等価 体とは、液体もしくは固体であり、特定の外部刺激により二酸化硫黄を発生させるこ とのできる物質のことを指す。この特徴を生かし、密封した反応容器内で二酸化硫黄 等価体に対し特定の刺激を与えることで、反応容器内でのみ二酸化硫黄を発生させ、 利用することができるとともに、実験者が二酸化硫黄に暴露される危険性を大幅に低 減できる。また、これらは秤量が容易であるため、一般的な気体を用いる反応のよう に過剰量用いる必要がない。したがって二酸化硫黄等価体を利用する手法は、有毒な 気体である二酸化硫黄の使用量を最小限に抑えることができるため、優れた安全性を 有する手法となることが期待される。以下に二酸化硫黄を発生可能な二酸化硫黄等価 体の代表例を示す。

古典的な等価体として、加熱により二酸化硫黄とブタジエンに分解する 3-sulfolene が挙げられる (Figure 2)³⁾。本化合物は常温で液体であることから、二酸化硫黄等価 体としての機能が期待できる。しかし本化合物は二酸化硫黄等価体ではなく、常温常 圧で気体であるブタジエンの等価体として利用される例が多い。

Figure 2. 3-Sulfolene

2・ニトロベンゼンスルホンアミド骨格や4・ニトロベンゼンスルホンアミド骨格、2,4・ジニトロベンゼンスルホンアミド骨格は、チオールと反応させることで S_NAr 型の反応が進行し、二酸化硫黄を発生させることができるため二酸化硫黄等価体として見ることができる(Figure 3)。しかしこれらの化合物の二酸化硫黄等価体としての利用例は、生物分野におけるプロドラックの利用に限られている。二酸化硫黄は抗菌作用があるため、プロドラックが細菌内タンパク質のシステイン残基の SH 基によって分解されることで、二酸化硫黄を発生させ、抗菌作用を示すことができる ^{4a)}。一方有機合成分野において、この骨格はアミノ基の保護基及び活性化基として多用されている ^{4b)}。

Figure 3. Reaction of 2-nitrobenzenesulfonamides with thiols.

無機塩の等価体として、亜硫酸塩やピロ亜硫酸塩が挙げられる ⁵⁾。これらは非常に 安価であるとともに、取り扱い容易な固体であり、酸の添加もしくは加熱により容易 に二酸化硫黄を発生させることができる(Figure 4)。

Figure 4. Metal sulfites and metabisulfites

二酸化硫黄は多くのアミン類と電荷移動錯体を形成することが知られている⁶⁾。この錯体の中でも1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)と二酸化硫黄の電荷移動 錯体はDABSOと呼ばれ、白色の固体であり、取り扱いが非常に容易である(Figure 5)。

Figure 5. DABSO

また二酸化硫黄ガスを直接発生させはしないが、SO₂²⁻あるいはSO₂-の等価体である Rongalite も、SO₂ユニットの導入に利用されている(Figure 6)⁷)。Rongalite は透明なチューブ状の結晶であり、吸湿性を有するため乾燥下での保存が必要だが、古くから含硫黄骨格の一つであるスルホンの合成に利用されており、現在も多くの研究が行われている。

Figure 6. Rongalite

第四節:二酸化硫黄等価体の利用

前節で述べた二酸化硫黄等価体を二酸化硫黄源とした含硫黄化合物合成法が近年多 数報告されている。この節では骨格の種類ごとに報告例を以下に紹介する。

第一項:二酸化硫黄等価体を用いるスルホンアミド合成法

二酸化硫黄等価体を用いるスルホンアミド骨格の合成例においては、2010 年 Willis らによって報告された *N*-アミノスルホンアミドの合成が初めての例である(Scheme 2)⁸⁾。本手法においては二酸化硫黄等価体として DABSO を用い、Pd 触媒的に *N*-アミ ノスルホンアミド骨格を構築することに成功している。ヒドラジン誘導体以外のアミ ン類ではスルホンアミド体が得られないという問題点を残しているが、本手法は、二 酸化硫黄等価体を用いる遷移金属触媒的な初の反応例でもあるため、本研究分野の先 駆け的な研究である。

Scheme 2. Synthesis of N-aminosulfonamides using DABSO.

また Wu らは、2012 年に初の二酸化硫黄等価体としてピロ亜硫酸カリウム(K₂S₂O₅) を利用する、ハロゲン化アリールから *N*-アミノスルホンアミド骨格を構築する手法を 報告している(Scheme 3)⁹⁾。本手法は非常に安価な K₂S₂O₅を二酸化硫黄等価体として 利用している点から、実用性に優れた手法となっている。しかし本報告においても、 Willis らと同様にヒドラジン誘導体以外のアミン類では、目的物が得られていない。

Scheme 3. Synthesis of N-aminosulfonamides using K₂S₂O₅.

2016 年 Wu らは、ハロゲン化アリール及びハロゲン化アルキルを基質とした UV 照 射による *N*-アミノスルホンアミド骨格構築法を報告している(Scheme 4)¹⁰。本手法は、 脱離基として過去の多くの報告例で用いられてきたブロモ基、ヨード基だけでなく、 クロロ基も適用可能である点が非常に興味深い。

Scheme 4. Synthesis of N-aminosulfonamides under metal-free condition.

2018年 Wu らは *N*-クロロアミンを窒素源とした一段階 Cu 触媒的スルホンアミド合成法を報告している(Scheme 5)¹¹⁾。本手法ではアミン類からの *N*-クロロアミンの調製が必要ではあるが、アミン類の *N*-クロロ化とスルホンアミド合成をワンポットで行うことができることも確認している。

Scheme 5. Cu-catalyzed synthesis of sulfonamides using N-chloroamines.

2018 年 Willis らは、一般的な第一級アミン、第二級アミンを用いる Cu 触媒的なス ルホンアミド合成法を報告した(Scheme 6)¹²⁾。本手法はこれまでの報告例において達 成されていなかった一般的な第一級アミン、第二級アミンを窒素源として用いる一段 階遷移金属触媒的スルホンアミド合成法であり、非常に革新的な手法である。

Scheme 6. Cu-catalyzed synthesis of sulfonamides using primary or secondary amines.

2017年 Wu らは光反応を利用した、二酸化硫黄等価体を用いる C(sp³)-H のアミノ スルホニル化を報告した(Scheme 7)¹³)。本手法は、二酸化硫黄等価体を用いる C-H 活性化反応において、C(sp³)-H 結合をスルホニル化した初の例である。

Scheme 7. Synthesis of sulfonamides via $C(sp^3) - H$ activation.

第二項:二酸化硫黄等価体を用いるスルホン酸エステル合成法

含硫黄骨格を分子に導入する場合に多用されるものとしてスルホン酸塩化物が挙げ られる。スルホン酸塩化物は、求核剤と作用させることで容易に反応しスルホン骨格 を合成できるが、その高い反応性から取り扱いに注意が必要であるとともに、長期に わたる保存が困難であるといった問題点がある。スルホン酸塩化物の代替物となりう るものとして、比較的安定なスルホン酸エステルが挙げられる。その中でも特にスル ホン酸ペンタフルオロフェニルエステルは、その取り扱いの容易さや高い求電子性を 維持している点などから、スルホン酸塩化物の代替物として有用である。2018 年 Willis らは二酸化硫黄等価体を用い、スルホン酸ペンタフルオロフェニルエステルをボロン 酸からワンポットで合成する手法を報告した(Scheme 8)¹⁴。

Scheme 8. One-pot synthesis of pentafluorophenyl sulfonates using DABSO

第三項:二酸化硫黄等価体を用いるスルホン酸フッ化物合成法

スルホン酸フッ化物の合成に関してはほぼ同時期にWillisらとBallら両研究グルー プから報告された(Scheme 9)¹⁵⁾。両研究グループともに二酸化硫黄等価体として DABSOを用い、Pd 触媒的にスルフィン酸アンモニウム塩を生成後、フッ素化剤とし て *N*-フルオロスクシイミド(NFSI)及び Selectfluor をそれぞれ用い、スルホン酸フッ 化物の合成を達成している。

Scheme 9. Pd-catalyzed synthesis of sulfonyl fluorides

第四項:二酸化硫黄等価体を用いるスルホン合成法

二酸化硫黄等価体を用いるスルホン合成の初の報告例として、2013 年 Willis らは、 ブロモアレーン類から調製した有機リチウム化合物に対し、DABSO を作用させること でスルフィン酸リチウムを生成後、Pd 触媒的なスルフィン酸塩のアリール化によって ジアリールスルホンをワンポットで合成することに成功している(Scheme 10)¹⁶⁾。本手 法では、配位子と用いているハロゲン化アリールとの間のアリール基同士の交換によ って、目的でないジアリールスルホンの生成が副反応として問題であったが、配位子 のホスフィン上の置換基を電子不足な芳香環とすること、さらにアリール化剤の脱離 基をブロモ基とすることで、その副反応の抑制に成功している。

Scheme 10. Synthesis of sulfones using DABSO via organolithium intermediates.

また同年に Mascitti らによって二酸化硫黄等価体として K₂S₂O₅を用いるワンポット Pd 触媒的スルホン合成が報告された(Scheme 11)¹⁷⁾。本報告例は二酸化硫黄等価体 を用いるスルホン合成において、ピロ亜硫酸塩を二酸化硫黄等価体として用いた初の 例である。

Willis らはさらに、二酸化硫黄等価体を用い、ヨードアレーン類を基質とした Pd 触 媒的なスルフィン酸アンモニウム塩の生成後、ハロゲン化アルキルやヨードニウム塩 を用いることでスルホン骨格をワンポットで構築することに成功している(Scheme 12)¹⁸⁾。

Scheme 12. Synthesis of sulfones using DABSO via Pd-catalyzed sulfination from aryl halides.

2015 年 Smith らはアリールボロン酸と臭化アルキルを基質とした、Pd 触媒的なス ルホン合成法を報告している(Scheme 13)¹⁹⁾。本手法は、アルキル化剤を後から加える これまでのワンポット合成とは異なり、一段階で一挙にスルホン骨格が構築できると いった特徴を有している。また本報告においては反応機構解析の一環として、二酸化 硫黄等価体を二酸化硫黄源として利用したスルホニル Pd 錯体の単結晶の X 線結晶構 造解析にも初めて成功しており、さらに本反応条件においてこの単結晶が触媒として 機能することを確認している。したがって本報告は、二酸化硫黄等価体を用いる Pd 触媒的反応の反応機構に対し重要な知見をもたらすものである。

Scheme 13. Synthesis of sulfones from arylboronic acids.

2017 年 Willis らは二酸化硫黄等価体として DABSO を用い、Cu 触媒的鈴木-宮浦カ ップリングを利用したスルホンの合成法を報告した(Scheme 14)²⁰⁾。本報告において Pd 触媒を用いると二酸化硫黄が導入されていないビフェニル体生成が競合し、目的と するジアリールスルホン合成が達成できなかったことから、Cu 触媒の適用が重要であ ったと著者らは述べている。

Scheme 14. Cu-catalyzed synthesis of diaryl sulfones.

上記に示した例では脱離基としてハロゲンを利用していたが、ジアゾニウム塩やヨ ードニウム塩を利用したラジカル的スルホン合成法もいくつか報告されている。

2016 年 Wu らは、ジアゾニウム塩を基質とし、二酸化硫黄等価体として DABSO を 用いた Cu 触媒的な α , β 不飽和スルホンの合成を報告した²¹⁾。本反応においては酸の 添加によって収率の大幅な向上を成し遂げている(Scheme 15)。この原因に関して著者 らは、酸によって DABSO からの二酸化硫黄の放出が促進されたからではないかと述 べている。

Scheme 15. Synthesis of α , β -unsaturated sulfones.

2017年 Jiang らはヨードニウム塩を基質とし、二酸化硫黄等価体としてピロ亜硫酸 ナトリウム(Na₂S₂O₅)を用いる五員環及び六員環の環状スルホン合成法を報告した (Scheme 16)²²⁾。本報告において著者らは、Na₂S₂O₅から二酸化硫黄ガスが発生し反応 に利用されているのではなく、Na₂S₂O₅が直接反応しているメカニズムを提唱してい る点が興味深い。

Scheme 16. Synthesis of cyclic sulfones.

2017年、Wuらの研究グループとXiaらの研究グループは、それぞれ独自に二酸化 硫黄等価体を用いるC-H活性化を伴ったスルホン合成法を報告した(Scheme 17)²³⁾。 これらの報告例において非常に興味深い点として、両研究グループが同じ基質を用い ているにもかかわらず、それぞれが異なる遷移金属触媒を用いることで、全く異なる 位置選択性を示すことが挙げられる。

Scheme 18. Application of C–H activation strategy for synthesis of sulfones.

また遷移金属触媒を用いない手法に関してもいくつか報告されており、一例として 2017 年 Cantat らは、フッ化物イオン源として TBAT を用いた、メタルフリーのスル ホン合成法を報告した(Scheme 19)²⁴⁾。本手法においては二酸化硫黄がピリジン骨格の 窒素と相互作用することで、C-Si 結合開裂の活性化エネルギーを低下させているこ とが DFT 計算により示されている。

Scheme 19. Synthesis of sulfones under metal-free condition.

第五項:二酸化硫黄等価体を用いるスルホキシド合成法

2016年 Willis らは二酸化硫黄等価体を用いる初のスルホキシドワンポット合成法を 報告した(Scheme 20)²⁵⁾。Willis らは過去に報告した Grignard 試薬を基質としたスル フィン酸塩合成法を利用し、生成したスルフィン酸塩に対し TMSCl を作用させること で、選択的な *O*-シリル化によりスルフィン酸エステルを生成後、新たな求核剤を添 加することによって、スルホキシドの合成を達成した。

Scheme 20. One-pot synthesis of sulfoxides

第五節:本研究の概要

本論文では、含硫黄化合物の中でもスルホンアミド、スルフィンアミド、スルホン の3種類の化合物群に関して、二酸化硫黄等価体を二酸化硫黄源として利用した新規 合成法の開発について述べる。前節で述べたように、これまで様々なアプローチから 二酸化硫黄等価体を用いる含硫黄化合物の合成が試みられてきたが、それぞれの手法 において利点及び欠点がある。含硫黄化合物の社会的有用性を考慮すると、含硫黄化 合物合成法の多様性は、効率的な新薬の創製や、高機能材料の開発など、より良い社 会の実現への貢献が期待できる。

第一章では、二酸化硫黄等価体を用いる環状スルホンアミド及びスルフィンアミド 類の選択的合成法の開発に関して述べる。二酸化硫黄等価体を用いる一段階スルホン アミド合成において、第一級・第二級アミン類を用いることはこれまで非常に困難で あり、最近になって一例報告されたのみである(Scheme 6)¹²⁾。そこで著者は本研究に おいて、第一級・第二級アミン類を用いる一段階スルホンアミド合成の開発研究に着 手した。その結果、分子内に脱離基及びアミン部位を有する基質を用いることで、一 段階で Pd 触媒的に環状スルホンアミド体が合成できること、またわずかな反応条件の 変化によってスルフィニル基含有化合物である環状スルフィンアミドも選択的に生成 することを見出した(Scheme 21)。二酸化硫黄等価体を用いて一段階にてスルフィニル 基を導入する例は皆無であることから、本反応は非常に興味深い。本章では、本反応 の検討に関する詳細を述べる。

Scheme 21. Pd-catalyzed selective synthesis of cyclic sulfonamides and sulfinamides

第二章では、二酸化硫黄等価体を用いるジアリールスルホン類の合成法に関して述 べる。過去に多くの二酸化硫黄等価体を用いるスルホン合成法が報告されてきたが、 その中で著者は Pd 触媒的なジアリールスルホン合成法に着目した。これまでにハロゲ ン化アリールから Pd 触媒的にスルフィン酸塩を合成する手法や、スルフィン酸塩とハ ロゲン化アリールから Pd 触媒的にジアリールスルホンを合成する手法は報告されて いるにもかかわらず、それらを一段階で一挙に進行させることはできず、二段階の反 応を行う必要があった。そこで著者は、適切な触媒系を設計することで、Pd 触媒的な スルフィン酸塩の生成とそのアリール化をハロゲン化アリールのみを基質として用い て一挙に進行させることができるのではないかと考え、検討を行った。本章では、上 記の作業仮説に基づいて行った分子間反応(Scheme 22)及び分子内反応の検討結果に ついて、その詳細を述べる。

Scheme 22. Pd-catalyzed direct synthesis of diaryl sulfones via arenesulfinates

本論文において開発された二酸化硫黄等価体を用いる含硫黄化合物合成法により、 含硫黄化合物合成法の多様性の拡大や二酸化硫黄等価体の新たな可能性を示すことが できた。本研究により、有用化合物の効率的な合成や二酸化硫黄等価体の化学のさら なる発展への貢献が期待される。

第一章

二酸化硫黄等価体を用いる環状スルホンアミドおよび スルフィンアミド類の一段階選択的合成法の開発

第一節:スルホンアミド類の合成法

スルホンアミド骨格は生物活性物質に多く存在する重要骨格の一つである。したが って、スルホンアミド骨格の効率的な合成法の開発は、創薬の発展に大きく貢献でき ると考えられる。

スルホンアミドの最も一般的な合成法としては、スルホン酸塩化物とアミン類の反応が挙げられる²⁶⁾。しかし、スルホン酸塩化物の高い反応性から、取り扱いに注意が必要であるという問題点がある。その他のスルホンアミド合成法として、スルフィンアミド・スルフェンアミドの酸化²⁷⁾があるが、酸化条件に不安定な官能基を有する基質には適用できないといった問題点がある(Scheme 23)。

Scheme 23. Conventional synthetic methods of sulfonamides.

そのような中、近年になってハロゲン化アリールから、二酸化硫黄等価体を用いて 遷移金属触媒的にスルホンアミド体を合成する手法が報告されてきた。これらの手法 は、従来の合成法の問題点を解決できる画期的な手法だが、窒素源としてヒドラジン 誘導体のみ使用可能であるため、N-アミノスルホンアミドしか合成できない。したが って、二酸化硫黄等価体を用いる一段階スルホンアミド合成では、窒素源として第一 級・第二級アミン類を用いることは困難である(Scheme 24)^{8), 9)}。

Scheme 24. Synthesis of N-aminosulfonamides using SO₂ surrogates.

ごく最近、第一級・第二級アミン類を用いる手法が報告されたが、基質としてボロン酸を用いており(Scheme 25)¹²⁾、ハロゲン化アリールからの合成例は皆無である。

Scheme 25. Cu-catalyzed synthesis of sulfonamides using primary or secondary amines.

この原因として著者は、これまでのハロゲン化アリールを用いる一段階スルホンア ミド合成には α 効果で求核性が増しているヒドラジン誘導体が窒素源として用いられ ていたことから、第一級・第二級アミン類では十分な求核性を有していなかったため ではないかと考えた(Scheme 26)。

第二節:本研究の目的

本研究では、上述した問題点を克服した、二酸化硫黄等価体を用いる遷移金属触媒 的スルホンアミド合成法の開発を行った。具体的には、ハロゲン化アリールを基質と する、窒素源として第一級・第二級アミン類を用いる一段階遷移金属触媒的スルホン アミド合成法の確立を目指した。そこで著者は、第一級・第二級アミン類では不十分 な求核性を補う方法として、分子間反応に比べエントロピー的に有利な分子内反応の 利用が有効ではないかと考えた。この考えに基づき、著者は分子内に脱離基および求 核点を有する基質を設計し、環状スルホンアミドの合成検討を開始した(Figure 7)。

Figure 7. Substrate design

その結果、分子内に脱離基および求核点を有する基質を用いることで、一段階で Pd 触媒的に環状スルホンアミド体が合成できること、また同時に環状スルフィンアミド 体が生成することがわかった(後述)。

スルフィンアミドの一般的な合成法は、スルフィン酸塩化物とアミン類の反応が知られているが、基質の取り扱いに注意を必要とする点が問題点であった²⁸⁾。また、二酸化硫黄等価体を用い、一段階でスルフィンアミドを合成する手法は皆無であった。

以上の点から、本研究がハロゲン化アリールを基質とする、初の二酸化硫黄等価体 を用いた Pd 触媒的な一段階スルホンアミド合成法となるとともに、初の二酸化硫黄等 価体を用いる一段階スルフィンアミド合成法となると考えた。したがって、研究目的 を「二酸化硫黄等価体を用いる環状スルホンアミドおよびスルフィンアミド類選択的 合成法の開発」とし、その詳細な検討を行った(Scheme 27)。

Scheme 27. Pd-catalyzed selective synthesis of cyclic sulfonamides and sulfinamides

第三節:反応条件の検討

本節では反応条件の検討に関して述べる。

モデル基質として、分子内に脱離基および求核点を有し、五員環の環状スルホンア ミドの生成が予想される2を設計し、環状スルホンアミド合成の反応条件の検討を行 った。またモデル基質2は2-ヨードベンジルアルコールを出発原料として、文献に従 い、二酸化マンガンによる酸化でベンズアルデヒド体1へと変換後²⁹⁾、還元的アミノ 化³⁰⁾を行うことによって、2工程総収率71%で合成した(Scheme 28)。

Scheme 28. Preparation of model substrate 2

これまで報告された二酸化硫黄等価体を用いる Pd 触媒的な N-アミノスルホンアミ ド合成法の反応条件を参考に、初期反応条件を設定した(Pd(OAc)₂: 10 mol%, P(t-Bu)₃·HBF₄: 20 mol%, K₂S₂O₅: 1.5 eq., DMSO, 100 ℃, 20 h)。その結果、環状ス ルホンアミド体 **3**を 25%の収率で得ることができた(Scheme 29)。また、本反応では ヨウ化水素が生じると考えられたため、その中和のために塩基として(*n*-Bu)₃N を添加 したところ、環状スルホンアミド体 **3**が全く得られず、環状スルフィンアミド体 **4**が 生成することがわかった。本検討により、塩基の添加が本反応の反応性に大きな影響 を与えていると考え、まず塩基の詳細な検討から行った。

Scheme 29. Preliminary study.

(n-Bu)₃Nの添加について、その当量を検討した結果、1当量を境に生成物の選択性 が大幅に変化することがわかった(Table 1)。(*n*-Bu)₃N が 1 当量以下の場合はスルホン アミド体のみが得られていたが(entries 1–4)、1 当量を超えるとスルホンアミドは全く 生成せず、スルフィンアミド体のみが得られた(entries 5-7)。この中でも(*n*-Bu)₃N が 1 当量のときにスルホンアミド体が、(*n*-Bu)₃N を 2 当量とすることでスルフィンアミ ド体がそれぞれ最もよい収率で得られた(entries 4, 6)。続いて、塩基の種類に関して1 当量および 2 当量それぞれの反応条件で検討を行った。塩基 1 当量の条件では、 (n-Bu)₃Nを用いていたときに比べ、他の塩基では収率の悪化や選択性の逆転が確認さ れた(entries 8-13)。特に DABCO を用いたときには大幅な収率の悪化が、 *i*Pr₂NH を 用いたときには大幅な選択性の逆転が確認された(entries 9, 12)。塩基2当量の条件で は、DABCOを用いたときにおいて収率が悪化し、2,6-lutidineを用いたときに選択性 の逆転がみられたが、その他の塩基ではほぼ同程度の収率かつスルフィンアミドへの 選択性を示した(entries 14–19)。以上の検討から、スルホンアミドおよびスルフィン アミドを高収率・高選択性で得られる塩基としては、トリアルキルアミン類もしくは ジアルキルアミン類であり、比較的求核性の高くないアミン類が適している傾向がみ られた。したがって最適塩基として(*n*-Bu)₃Nを選択した。また(*n*-Bu)₃Nを1当量用い る条件では、二酸化硫黄等価体である K₂S₂O₅を2当量に増量することでスルホンアミ ド体の収率が向上した(entry 20)。以上の検討から、スルホンアミド合成の最適条件を entry 6、スルフィンアミド合成の最適条件を entry 20 とした。

	$Pd(OAc)_2$ (10)	nol%)		
Н	К ₂ S ₂ O ₅ (1.5 base (X ес	eq.)		
N_(<i>n</i> -Bu)	DMSO, 100 °C	s, 18 h		u) +
			3	4
entry	hase	X (eq.)	yiel	d (%)
	Dase	Λ (eq.)	3	4
1	(<i>n</i> -Bu) ₃ N	0	25	_
2	(<i>n</i> -Bu) ₃ N	0.10	33	_
3	(<i>n</i> -Bu) ₃ N	0.50	20	-
4	(<i>n</i> -Bu) ₃ N	1.0	48	-
5	(<i>n</i> -Bu) ₃ N	1.5	-	39
6	(<i>n</i> -Bu) ₃ N	2.0	-	54
7	(<i>n</i> -Bu) ₃ N	3.0	_	48
8	<i>i</i> Pr ₂ NEt	1.0	19	10
9	<i>i</i> Pr ₂ NH	1.0	<8	54
10	DMAP	1.0	24	<13
11	2,6-lutidine	1.0	40	-
12	DABCO	1.0	<7	<10
13	BnNMe ₂	1.0	29	_
14	<i>i</i> Pr ₂ NEt	2.0	_	53
15	<i>i</i> Pr ₂ NH	2.0	<8	42
16	DMAP	2.0	<15	42
17	2,6-lutidine	2.0	<25	21
18	DABCO	2.0	trace	26
19	BnNMe ₂	2.0	10	38
20 ^a	(<i>n-</i> Bu) ₃ N	1.0	59	_
21 ^a	(<i>n</i> -Bu) ₃ N	2.0	_	46

Table 1. Effect of bases.

^a K₂S₂O₅ (2.0 eq.).

さらに溶媒の検討を行ったところ、溶媒によっても選択性が変化することがわかった(Table 2)。(*n*-Bu)₃Nの当量に関わらず、スルホンアミド体は、DMSOを溶媒として用いたときにのみ生成し(entry 1)、他の溶媒ではスルフィンアミド体が主に生成する、もしくは原料回収、反応の複雑化を招く結果となった(entries 2–12)。この結果から、スルホンアミド生成において、DMSOが関与している可能性が考えられる。また、目的物であるスルホンアミド体もしくはスルフィンアミド体は、非プロトン性極性溶媒を用いなければ得られなかった。これは二酸化硫黄等価体である K₂S₂O₅や二酸化硫黄、反応中間体の溶解性向上などが原因として推測される。以上の検討から、DMSO をスルホンアミド合成およびスルフィンアミド合成の最適な溶媒とした。

Table 2. Effect of solvents.

ontru		(<i>n</i> -Bu) ₂ N (eq.)	K.S.O. (00.)	colvont	yield (%)		
enu	enuy	(11-00)314 (eq.)	$K_2 S_2 O_5$ (eq.)	Solvent	recovered 2	3	4
	1	1.0	2.0	DMSO	—	59	-
	2	1.0	2.0	DMF	_	_	45
	3	1.0	2.0	MeCN	_	trace	7
	4	1.0	2.0	toluene	<39	trace	—
	5	1.0	2.0	<i>n</i> -BuOH	cor	nplex mixtu	ire
	6	1.0	2.0	DCE	cor	nplex mixtu	ire
	7	2.0	1.5	DMSO	_	_	54
	8	2.0	1.5	DMF	_	_	37
	9	2.0	1.5	MeCN	_	_	_
	10	2.0	1.5	toluene	<44	trace	—
	11	2.0	1.5	<i>n-</i> BuOH	cor	nplex mixtu	ire
	12	2.0	1.5	DCE	cor	nplex mixtu	ire

これまでスルホンアミド体が選択的に得られていた(*n*-Bu)₃N が1当量の条件下において配位子の検討を行ったところ、選択性の変化が確認された(Table 3)。これまで用いてきた P(*t*-Bu)₃や Buchwald 型配位子である XPhos や SPhos においては良好なスルホンアミド選択性を示した(entries 1, 5, 6)。しかし、XPhos を用いた際は、分離困難な副生成物が生じたため、これらの配位子の中では P(*t*-Bu)₃が最も適していると判断した。それに対し Ad₂PBu (cataCXium[®] A)や PPh₃、二座ホスフィン配位子ではスルフィンアミド選択性を示す結果となった(entries 3, 4, 7–11)。また、PCy₃や 1,10-Phen を用いた際にはスルホンアミド体およびスルフィンアミド体の両方を得る結果となった(entries 2, 12)。さらに、配位子を添加しない条件でもスルホンアミド体が中程度の収率で得られることを確認している(entry 13)。以上の検討から、スルホンアミド合成の最適配位子を P(*t*-Bu)₃とした。

Table 3. Effect of ligands $((n-Bu)_3N: 1.0 \text{ eq.})$.

これまでスルフィンアミド体が選択的に得られていた(*n*-Bu)₃N が 2 当量の条件下に おいて配位子の検討を行った(Table 4)。その結果、全ての配位子においてスルフィン アミド選択的に反応が進行し、PCy₃を用いたときに最も収率よく **4** を得ることができ た。また、(*n*-Bu)₃N が 1 当量の条件のときと同様に、配位子を添加しない条件下でも 反応が進行し、中程度の収率でスルフィンアミド体を得られる結果となった。以上の 検討から、スルフィンアミド合成の最適配位子を PCy₃とした。

Table 4. Effect of ligands $((n-Bu)_3N: 2.0 \text{ eq.})$.

L L L H N 2	`^(<i>n</i> -Bu)	Pd(OAc) ₂ (10 mol%) ligand (20 mol%) K ₂ S ₂ O ₅ (1.5 eq.) (<i>n</i> -Bu) ₃ N (2.0 eq.) DMSO, 100 °C, 18 h	О	+	I—(<i>n</i> -Ви)
-	entry	ligand	yiel	d (%)	
-	enuy	nyanu	3	4	
	1	P(<i>t</i> -Bu) ₃ ·HBF ₄	—	54	
	2	PCy ₃	-	75	
	3	Ad ₂ PBu	<5	61	
	4	PPh ₃	trace	65	
	5	XPhos	trace	49	
	6	SPhos	_	62	
	7	Xantphos	-	54	
	8	DPPE	-	36	
	9	DPPP	trace	27	
	10	DPPB	_	60	
	11	DPPF	_	42	
	12	1,10-Phen	_	58	
	13	_	6	52	

これらの結果から、本反応において配位子はスルホンアミド体とスルフィンアミド 体の選択性に主に影響しており、収率の向上には大きな寄与をしていない可能性が考 えられる。

第四節:基質一般性の検討

分子内に脱離基と求核点としてアミン部位を有する種々の基質を合成し、本反応の 適用範囲を確認することとした。

第一項:基質合成

5員環のスルホンアミドおよびスルフィンアミドを形成する基質は、2-ヨードベンズ アルデヒド体から還元的アミノ化によって一段階で合成可能である。また、種々の 2-ヨードベンズアルデヒド体は、入手容易なアントラニル酸誘導体から合成可能である ため、多数の環化前駆体が容易に合成可能だと考えられる(Scheme 30)。

Scheme 30. Synthesis of substrates from easily available materials

窒素上の置換基を種々変更した基質については、モデル基質の合成法 ^{29), 30)}に従い、 2段階目において対応するアミン類を用いることで、化合物 5、6、7、8、9 を合成した(Scheme 31)。

Scheme 31. Preparation of substrates 5, 6, 7, 8, and 9

また、ベンゼン環上に種々の置換基を有する基質の合成を行った(Scheme 32)。種々 の置換基を有するアントラニル酸を出発原料として、Sandmeyer 反応によって、アミ ノ基をヨード基へと変換後³¹⁾、NaBH₄とヨウ素によって反応系内で発生させた BH₃・ THF 錯体によるボラン還元によってカルボキシ基をアルコールまで還元することによ り³²⁾、2 段階で 10、11、12、13、14、15、16 を得た。続いて、モデル基質の合成 法に従い、二酸化マンガンによる酸化でベンズアルデヒド体へと変換後、還元的アミ ノ化を行うことによって化合物 17、18、19、20、21、22、23 を得た。

Scheme 32. Preparation of substrates 17, 18, 19, 20, 21, 22, and 23

また 4 位にメチルエステルを有する基質に関しては、文献に従い、2-アミノテレフ タル酸の一方のカルボキシ基をメチルエステル化した後に³³⁾、これまでと同様の手法 で目的の 2 位にヨード基を有する化合物 **25** を合成した(Scheme 33)。

Scheme 33. Preparation of substrate 25

6 員環のスルホンアミド体やスルフィンアミド体が生成しうる基質の合成を行った (Scheme 34)。2-ニトロトルエンを出発原料として、文献に従い、ホルムアルデヒドを 用いる増炭反応を行うことで 26 を合成後 ³⁴⁾、Pd/C による水素添加 ³⁵⁾に続く Sandmeyer 反応 ³¹⁾によって 27 を合成した。続いてヒドロキシ基を Ts 化 ³⁶⁾すること で 28 へ変換後、*n*-BuNH₂による求核置換反応 ³⁷⁾により化合物 29 を合成した。

Scheme 34. Preparation of substrate 29

さらに含窒素ヘテロ環を有する基質の合成を行った(Scheme 35)。インドール骨格を 有する基質に関しては、インドール・2・カルボン酸を出発原料とし、文献に従い、LiAlH4 による還元でアルコール体 30 へと変換後 ³⁸⁾、二酸化マンガンによる酸化 ²⁹⁾でアルデ ヒド体 31 を得た。その後、インドールの 3 位ヘヨード基の導入 ³⁹⁾に続く還元的アミ ノ化 ³⁰⁾によって 33 を得た。またインドールの NTs 化体 34 は 32 に対し Ts 化 ⁴⁰⁾した 後に還元的アミノ化 ³⁰⁾を行うことで合成した。キノリン骨格を有する基質に関しては、 2・クロロ・3・キノリンカルボキシアルデヒドを出発原料とし、クロロ基をヨード基に変 換後 ⁴¹⁾、還元的アミノ化 ³⁰⁾によって 36 を得た。また、ピリジン骨格を有する基質に 関しては、3・アミノ・4・メチルピリジンを出発原料とし、Sandmeyer 反応 ⁴²⁾によって 37 を合成後、ベンジル位の酸化によってアルデヒド体へと変換し ⁴³⁾、還元的アミノ化 ³⁰⁾を行うことによって化合物 38 を得た。

Scheme 35. Preparation of substrates 33, 34, 36, and 38
続いて含硫黄ヘテロ環を有する基質として **41**の合成を行った(Scheme 36)。3・アミ ノ・2・チオフェンカルボン酸メチルを出発原料として、Sandmeyer 反応によって **39**を 合成した ⁴⁴⁾。続いて水酸化ナトリウムによる加水分解でカルボン酸体へと変換後、 NaBH₄とヨウ素によって反応系内で発生させた BH₃・THF 錯体によるボラン還元によ ってカルボキシ基をアルコールまで還元することにより ³²⁾、2 段階で **40**を得た。そ の後、二酸化マンガンによる酸化でアルデヒド体とした後に ²⁹⁾、還元的アミノ化 ³⁰⁾に よって化合物 **41**を得た。

Scheme 36. Preparation of substrate 41

第二項:基質一般性

合成した 19種の基質を用い、二酸化硫黄等価体を用いる一段階スルホンアミド類お よびスルフィンアミド類の選択的合成を試みた。反応条件としては、第一項にて見出 したスルホンアミド合成およびスルフィンアミド合成それぞれの最適条件を用いた。

スルホンアミド合成の最適条件下での検討結果を以下に示す(Table 5)。窒素上の置 換基をモデル基質より嵩高い *I*Pr 基や *t*Bu 基としたところ、モデル基質とほぼ同程度 の収率でスルホンアミド体が得られた(entries 2, 3)。この結果から、スルホンアミド 生成において窒素上の置換基の立体障害の影響は小さいと考えられる。芳香族系の置 換基としてPh 基やPMP 基を有する基質では、収率の低下が確認された(entries 4.5)。 また、Bn 基を有する基質においては円滑に反応が進行し、66%と良好な収率でスルホ ンアミド体が得られた(entry 6)。続いて、脱離基であるヨード基のオルト位にメチル 基を有する基質では、立体障害の影響で反応温度を 120 ℃まで昇温する必要があった が、25%の収率でスルホンアミド体が得られた(entry 7)。さらに、電子供与性置換基 および電子求引性置換基を有する基質や、エステルやクロロ基など、反応によって損 なわれる恐れのある官能基も、本反応条件下で損なわれることなく、スルホンアミド 体が得られている(entries 8-10, 12-14)。しかしニトロ基を有する基質では反応が複雑 化する結果となった(entry 11)。これはニトロ基自体が還元され、ニトロソ体が生成し てしまったことなどが原因として考えられる。続いて29を基質とした、6員環のスル ホンアミド体の合成を試みたところ、目的物の収率は低収率となった(entry 15)。この 原因として、脱ハロゲン化体の生成や、基質がアミンとして消費されてしまったなど が考えられる。また、合成したヘテロ環を有する基質を用い検討を行ったところ、わ ずかに脱ハロゲン化体を確認するのみで、反応が複雑化する結果となった(entries $16-20)_{\circ}$

		Pd(OAc) ₂ (P(<i>t</i> -Bu) ₃ ·HBF ₂ K ₂ S ₂ O ₅ (2 (<i>n</i> -Bu) ₃ N (10 mol%) 4 (20 mol%) 2.0 eq.) 1.0 eq.) 0 °C, 18 h	$\mathcal{O}_{\mathcal{V}}^{O}$ $\mathcal{O}_{\mathcal{V}}^{N}$ $\mathcal{O}_{\mathcal{N}}^{N-R}$ \mathcal{O}_{n}^{N-R}	
	(n = 1, 2)		produ		vield (%)
1 2 3 4 5 6		2: R = <i>n</i> -Bu 5: R = <i>i</i> Pr 6: R = <i>t</i> -Bu 7: R = Ph 8: R = PMP 9: R = Bn	O N-R	3 : R = <i>n</i> -Bu 42 : R = <i>i</i> Pr 43 : R = <i>t</i> -Bu 44 : R = Ph 45 : R = PMP 46 : R = Bn	59% 48% 57% 37% 48% 66%
7 8 9 10 11 12 13 14	$R_{5}^{4} \overset{3}{\underset{6}{\overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	 17: R = 3-Me 18: R = 4-OMe 19: R = 4-CF₃ 25: R = 4-CO₂Me 20: R = 4-NO₂ 21: R = 5-OMe 22: R = 5-CI 23: R = 6-Me 	$R_{5}^{4} \underbrace{\overset{0}{\overset{0}{\underset{6}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\underset{1}{\overset{0}{\underset{1}{\underset{1}{\underset{1}{\underset{1}{\underset{1}{\underset{1}{\underset{1}{\underset$	47 : R = 3-Me 48 : R = 4-OMe 49 : R = 4-CF ₃ 50 : R = 4-CO ₂ Me 51 : R = 4-NO ₂ 52 : R = 5-OMe 53 : R = 5-Cl 54 : R = 6-Me	25% ^a 57% 57% 56% 0% 63% 54% 51%
15	I N H	29	O, O S N ⁻ (<i>n</i> -Bu)	55	12%
16 17	HN-(n-Bu)	33 (R = H) 34 (R = Ts)	O S∼N ^(n-Bu) R	56 (R = H) 57 (R = Ts)	C.M. C.M.
18	H N (<i>n</i> -Bu)	36	N N N N N -(n-Bu	58)	C.M.
19	N H N (<i>n</i> -Bu)	38	N N N N N N N N (<i>n</i> -Bu)	59	C.M.
20	S N (n-Bu)	41	o_o S_N−(n-Bu)	60	C.M.

Table 5. Substrate scope for sulfonamide synthesis ($(n-Bu)_3N$: 1.0 eq.).

^a 120 °C

C.M.= complex mixture.

次にスルフィンアミド合成の最適条件下での検討結果を以下に示す(Table 6)。窒素 上に *i*Pr 基や *t* Bu 基を置換基として有する基質を用いたところ、スルホンアミド合成 のときと同様に、モデル基質とほぼ同程度の収率でスルフィンアミド体が得られた (entries 2, 3)。したがって、スルフィンアミド生成においても窒素上の置換基の立体 障害の影響は小さいと考えられる。一方、芳香族系の置換基である Ph 基や PMP 基を 有する基質では、選択性の悪化が確認された(enries 4, 5)。続いて、**17**を基質とした 場合、スルホンアミド合成において問題となった立体障害の影響はあまりみられず、 中程度でスルフィンアミド体を得られた(entry 7)。続いて、電子供与性置換基および 電子求引性置換基を有する基質、エステルやクロロ基など反応によって損なわれる恐 れのある官能基を有する基質においても、本反応条件下で損なわれることなくスルフ ィンアミド体が得られることを確認している(entries 8-10, 12-14)。しかし、スルホン アミド合成のときと同様に、ニトロ基を有する基質では反応が複雑化する結果となっ た(entry 11)。29 を基質とし、6 員環のスルフィンアミドの合成を試みたところ、ス ルフィンアイド体の収率は低収率となった(entry 15)。この原因としては、スルホンア ミド合成時と同様に、脱ハロゲン化体の生成や、基質がアミンとして消費されてしま ったなどが考えられる。さらにヘテロ環を有する基質を用い検討を行ったところ、ス ルホンアミド合成時と同様に、多くの基質で反応の複雑化がみられたが(entries 16-18, 20)、38 を基質として用いた場合に、スルフィンアミド体の生成を確認し、さらに反 応溶液の濃度を低くすることで、スルフィンアミド体の収率を中程度まで向上させる ことができた(entry 19)。

Table 6. Substrate scope for sulfinamide synthesis ((*n*-Bu)₃N: 2.0 eq.).

^a Yield of sulfonamide. ^b 0.033 M. C.M.= complex mixture. また本反応の分子間反応への適用が可能か検討を行った(Scheme 37)。スルフィンア ミド合成の最適条件下、4-ヨードアニソールと(*n*-Bu)₂NH を基質とし、検討を行った ところ、わずかにスルホンアミド体の生成を確認するのみであった。またスルフィン アミド体の生成は全く確認できなかった。この結果から、本触媒条件は分子内反応の み有効であると考えられる。さらに、Willis らや Wu らの報告した、ヒドラジン誘導 体を窒素源として用いる手法を参考に、窒素源として *N*-アミノモルホリンを用い、ス ルフィンアミド合成の最適条件下で検討を行ったが、*N*-アミノスルフィンアミド体の 生成は確認できず、*N*-アミノスルホンアミド体を 14%で得るのみであった。この結果 から、本反応はこれまで報告されてきた二酸化硫黄等価体を用いる *N*-アミノスルホン アミド合成とは異なる反応機構で進行していることが示唆される。

Scheme 37. Application to intermolecular reactions

以上の検討から、本反応の基質一般性の特徴をまとめる。

- ① 窒素上の置換基がアルキル基の場合、スルホンアミドおよびスルフィンアミドを高 選択的に得ることができ、置換基の立体障害による収率への影響は少ない。また窒 素上の置換基がアリール基の場合、スルホンアミド体は選択的に得られたが、スル フィンアミド体は選択的に得られず、スルホンアミド体が同時に生成する結果となった。
- ② 脱離基であるヨード基のオルト位にメチル基を有する基質では、スルホンアミド合成において立体障害の影響で、反応温度の昇温が必要だった。また、ベンゼン環上に電子供与性・電子求引性置換基を有していても、収率およびスルホンアミドおよびスルフィンアミドの選択性に大きな変化はみられなかった。例外として、ニトロ基を有する基質では反応が複雑化し、スルホンアミドおよびスルフィンアミドのどちらも得られなかった。
- ③ 29 を基質として反応を行った場合、低収率だが 6 員環のスルホンアミド体および スルフィンアミド体を選択的に得ることができた。
- ④ ヘテロ環を有する基質を用いた場合、ほぼ全ての基質において反応が複雑化し、目 的物を得ることはできなかった。例外として、38を基質とした場合、反応溶液の 濃度を低くすることでスルフィンアミドを中程度の収率で得ることができた。
- ⑤ 本反応条件の分子間反応への適用は困難である。

第五節:反応機構に関する検討

(*n*-Bu)₃N が 1 当量および 2 当量の条件それぞれにおいて、反応の経時変化を観察す ることで、反応機構に関する知見を得ようと試みた(Figure 8)。基質としてモデル基質 2 を用い、1 当量の(*n*-Bu)₃N の条件下で反応の経時変化を観察したところ、反応の初 期においてスルホンアミド体は生成せず、スルフィンアミド体が生成した(time 0–6 h)。 その後、スルフィンアミド体の生成量は 6 時間をピークに減少し、それと同時にスル ホンアミドの生成量が増加していく結果となった(time 6–18 h)。続いて(*n*-Bu)₃N が 2 当量の条件下でも経時変化を観察したところ、反応初期からスルフィンアミド体のみ が生成し、スルホンアミド体の生成は全く確認できなかった。

本検討から得られた反応機構に関する知見として、以下の点が挙げられる。

- 本反応における一次生成物はスルフィンアミドであり、(*n*-Bu)₃N が1当量の条件ではスルフィンアミドからスルホンアミドへの変換が進行することでスルホンアミド体が選択的に得られる。
- ② (*n*-Bu)₃N が 2 当量の条件では、スルフィンアミドからスルホンアミドへの変換が 抑制されることでスルフィンアミド体が選択的に得られる。

そこで、実際の反応条件下でスルフィンアミドからスルホンアミドへの変換が起こ るかを検証するために、スルフィンアミド4を基質とするスルホンアミド3への変換 の検討を行った(Table 7)。本検討では、スルフィンアミド生成過程で二酸化硫黄が 1 当量消費されることを考慮し、4を基質とする3への変換は、スルホンアミド合成の 最適条件の中で、二酸化硫黄等価体である K₂S₂O₅ を1当量として検討を行っている。 その結果、3 への変換は確認できず、4 を回収する結果となった(entry 1)。著者はモ デル基質を用いていた反応の際には、基質の脱離基であるヨウ化物イオンが反応系中 に存在していたことに着目した。すなわち、本反応において基質から生成したヨウ化 物イオンがスルフィンアミドからスルホンアミドへの変換に関与していると考えた。 そこでヨウ化物イオン源として KIを1当量添加し検討を行ったが、3への変換は確認 できなかった(entry 2)。ここで著者は、本反応の選択性の制御には(n-Bu)₃Nの当量が 重要な役割を果たしていることに着目した。即ち、スルホンアミド合成の最適条件下 では、添加していた1当量分の(*n*-Bu)₃Nはスルフィンアミド生成時に消費されている と考え、(n-Bu)₃Nを添加せずに検討を行った結果、原料の4は消失し、3への変換が 確認できた(entry 3)。一方、KI存在下、(*n*-Bu)₃Nと二酸化硫黄等価体である K₂S₂O₅ を添加しない条件、もしくは K2S2O5存在下、(n-Bu)3N と KI を添加しない条件におい ては、3が大幅に低下する結果となった(entries 4, 5)。この結果から、本反応におい て KI および K₂S₂O₅の両方が存在することにより、4 から3 への酸化がより円滑に進 行したと考えられる。また、実際のスルホンアミド合成検討の際、反応溶液や後処理 の様子から、分子状ヨウ素の生成が疑われた。そこで、分子状ヨウ素を添加し、検討 を行ったところ、3 が高収率で生成することがわかった(entry 6)。さらに、ヨウ化カ リウム存在下、溶媒を DMF へと変更し検討を行ったところ、3 への変換は全く確認で きなかった(entry 7)。この結果から、溶媒の DMSO がスルフィンアミド体からスルホ ンアミド体への変換に関与している可能性が考えられた。

ĺ	О У. N—(<i>n</i> -Bu)	Pd(OAc) ₂ (10 r P(<i>t</i> -Bu) ₃ ·HBF ₄ (2 K ₂ S ₂ O ₅ (1.0 (<i>n</i> -Bu) ₃ N (0 or 1 additive	mol%) 0 mol%) eq.) I.0 eq.)	О //_О S N—(<i>n</i> -В	u)
·	پر از کر 4	solvent , 100 °C	C, 18 h	3	
entry	(<i>n</i> -Bu) ₃ N (eq.)	additive (eq.)	solvent	yield (% recovered 4	%) 3
1	1.0	_	DMSO	85	—
2	1.0	KI (1.0)	DMSO	76	_
3	0	KI (1.0)	DMSO	_	64
4 ^a	0	KI (1.0)	DMSO	45	9
5	0	-	DMSO	60	19
6	0	l ₂ (0.5)	DMSO	_	82
7	0	KI (1.0)	DMF	92	_

^a absence of $K_2S_2O_5$.

スルフィンアミドからスルホンアミドへの変換に関するさらなる知見を得るため、 Pd 触媒非存在下で検討を行った(Table 8)。4 を DMSO 中で加熱したところ、低収率 だが3への変換が確認できた(entry 1)。これが溶存酸素による影響なのか確認するた め、凍結脱気を行った DMSO を溶媒として用い検討を行ったところ、3 への変換が若 干抑制されるのみであった(entry 2)。また、凍結脱気を行った DMSO を溶媒として、 反応時間を72時間としたところ、4の消失および中程度の収率で3が得られた(entry 3)。これらの結果から、4から3への酸化が溶存酸素によってわずかに進行している 可能性はあるが、その関与は小さく、DMSO によって4から3への酸化がゆっくり進 行可能であると考えられる。先の検討において、4から3への酸化の促進には、ヨウ 化物イオンと二酸化硫黄等価体である K₂S₂O₅ の両方の存在が重要である知見が得ら れていたため、ヨウ化物イオンおよび K₂S₂O₅を添加し検討を行った。その結果、ヨウ 化物イオン源のみを添加した場合、3 への変換はあまり進行しなかったのに対し、二 酸化硫黄等価体である K2S2O5 を添加した場合は中程度で **3** が得られる結果となった (entries 4-6)。一方、KI と K₂S₂O₅の両方を添加したところ、高収率で**3**が得られ、 その当量を触媒量としたとしても問題なく3への変換が進行した(entries 7, 8)。また、 先の検討と同様に、分子状ヨウ素を添加し検討を行ったところ、高収率で3の生成が 確認できた(entry 9)。さらに、(*n*-Bu)₃Nのみを添加し検討を行ったところ、原料回収 となったことから、本反応において $(n-Bu)_{3}N$ は、ヨウ化物イオンと $K_{2}S_{2}O_{5}$ 、DMSO による 4 から 3 への酸化だけでなく、DMSO 中の加熱のみによる 4 から 3 への酸化 も抑制しているという知見が得られた(entry 10)。

Table 8. Conversion to **3** from **4**.

	O // additive		
	N—(<i>n</i> -Bu) DMSO, 100 °C, 18	sh N	—(<i>n-</i> Bu)
	4	3	
ontry	additive (og)	yield (%	6)
enuy		recovered 4	3
1	-	43	29
2 ^a	-	62	<20
3 ^{a, b}	-	_	54
4	KI (1.0 eq.)	58	24
5	(<i>n</i> -Bu) ₃ N·HI (1.0 eq.)	56	31
6	K ₂ S ₂ O ₅ (1.0 eq.)	14	65
7	K ₂ S ₂ O ₅ (1.0 eq.), KI (1.0 eq.)	_	82
8	K ₂ S ₂ O ₅ (0.25 eq.), KI (0.25 eq.)	_	82
9	l ₂ (0.5 eq.)	_	84
10	(<i>n</i> -Bu) ₃ N (0.5 eq.)	99	_

^a DMSO degassed by freeze-pump-thaw cycling was used. ^b 72 h.

これらスルフィンアミドからスルホンアミドへの変換検討の結果と、過去に DMSO 中、ピロ亜硫酸塩を用いることで酸化反応が促進されるという報告例 45 があることを 合わせて考察すると、本反応において、4 から 3 への酸化は、 $K_2S_2O_5$ と DMSO の二 成分によって進行している可能性と、 $K_2S_2O_5$ と DMSO によってヨウ化物イオンが酸 化されて分子状ヨウ素が生成し、生成した分子状ヨウ素 と DMSO によって進行してい る可能性の 2 通りが考えられる。また、この過程でピロ亜硫酸塩は触媒回転している 可能性が考えられる。さらに、スルフィンアミドは DMSO 中の加熱のみでもスルホン アミドへと変換可能であること、 $(n-Bu)_3N$ は上記全ての 4 から 3 への酸化過程を抑制 できることを見出した。 また、スルホンアミド体生成へのヨウ化物イオンの関与の知見を得るために、脱離 基としてブロモ基を有する 80 を用い検討を試みた。なお、80 はモデル基質 2 の合成 法と同様の手法を用い、2 段階 78%の収率で合成した(Scheme 38)。

Scheme 38. Preparation of substrate 80

合成した 80 を用い、スルホンアミド体が選択的に得られていた(*n*-Bu)₃N が 1 当量 の条件で検討を行った(Table 9)。その結果、スルホンアミド体は得られず、スルフィ ンアミド体を選択的に得る結果となった(entry 1)。そこで KI の添加を行ったところ、 スルホンアミド体のみを得ることができた(entry 2)。この結果から、本反応において、 ハロアレーン類からスルホンアミド体を効率的に得るためには、K₂S₂O₅ と DMSO に よる酸化だけでは不十分であり、ヨウ化物イオンの関与が必要であると考えられる。

Table 9. Effect of leaving group.

また、配位子検討において(*n*-Bu)₃N が1当量の条件であっても、スルフィンアミド 体が得られるケースがあった。この原因が配位子効果によるものか、スルホンアミド 体への変換がまだ進行していなかっただけなのかを確認するため、(*n*-Bu)₃N が1当量 の条件においてスルフィンアミド体が得られていた配位子を用い、反応時間の検討を 行った(Table 10)。PPh₃および PCy₃を用い、反応時間を24時間に延長し、検討を行 ったところ、両方の配位子においてスルホンアミド体を選択的に得る結果となった (entries 2, 4)。この結果から、配位子はスルフィンアミド体の収率および生成速度に 影響を与えており、スルホンアミド体生成過程への影響は小さいと考えられる。

I H N (<i>n</i> -Bu	Pd(lig K (<i>n</i>) DM	OAc) ₂ (10 m gand (20 mc ₂ S ₂ O ₅ (2.0 ¢ -Bu) ₃ N (1.0 SO, 100 °C,	nol%) bl%) eq.) eq.) time		(<i>n-</i> Bu) [0 "/ S N-(<i>n</i> -Bu) 4
	entry	ligand	time (h)	yiel 3	d (%) 4	-
-	1	PPh_3	18	_	62	-
	2	PPh_3	24	62	—	
	3	PCy ₃	18	24	49	
	4	PCy ₃	24	59	—	

Table 10. Effect of ligands and reaction time on the selectivity between 3 and 4.

以上の検討から、本反応機構に関して特筆すべき点を以下に挙げる。

- ① 本反応における一次生成物はスルフィンアミドであり、そこからスルホンアミドへと変換されている。また、スルフィンアミドからスルホンアミドへの変換過程には二酸化硫黄等価体である K₂S₂O₅もしくは二酸化硫黄と DMSO によって進行している可能性が考えられる。また、実際の実験時、分子状ヨウ素の生成が示唆されたため、K₂S₂O₅と DMSO によって脱離基由来のヨウ化物イオンが酸化されて分子状ヨウ素が生成し、分子状ヨウ素と DMSO によってスルフィンアミドからスルホンアミドへの変換が進行している可能性も考えられる。
- ② Pd 触媒存在下では、ヨウ化物イオン源と K₂S₂O₅、DMSO の三成分がすべて存在 していたときに、最も効率的にスルホンアミドへ変換が確認できていたことから、 この三成分が関与する反応機構がスルフィンアミドからスルホンアミドへの変換 の主生成経路である可能性が考えられる。
- ③ DMSO 以外の溶媒ではスルホンアミド体が得られていないこと、反応終了時ジメ チルスルフィド特有の臭気を確認していることから、DMSO が酸化剤として機能 していると考えられる。
- ④ (*n*-Bu)₃N の当量によってスルホンアミドとスルフィンアミドの選択性を制御でき、
 1 当量以上の(*n*-Bu)₃N を用いることでスルフィンアミドを選択的に得られることから、(*n*-Bu)₃N がスルフィンアミドからスルホンアミドへの変換を制御していることが考えられる。
- ⑤ 配位子が本反応の選択性に与える影響は低いと考えられる。

以上の点を踏まえ、想定されるスルフィンアミドおよびスルホンアミド生成の反応 機構を考察する。

I. スルフィンアミド生成の反応機構

スルフィンアミド生成の反応機構に関して、著者は2種類の反応機構を推定した。 第一の反応機構を示す(Scheme 39)。まず添加しているアミンや二酸化硫黄等価体、二 酸化硫黄によって Pd(OAc)2が還元されることにより Pd(0)が生成していると考えられ る。続いて基質の Pd(0)への酸化的付加および、二酸化硫黄の挿入が進行し、中間体 a と中間体 b の平衡状態になる。その後、分子内のアミン部位が中間体 b のスルフィニ ル硫黄原子へ求核攻撃することで分子内環化反応が進行し、スルフィンアミドを生成 すると考えた。また、スルフィンアミド生成に伴い生じた Pd(II)種は、添加している アミンによって還元され、Pd(0)が再生すると考えられる。したがって約1当量分のア ミンはスルフィンアミド生成の触媒サイクルで消費されていると考えられる。

Scheme 39. Assumed reaction mechanism for formation of sulfinamide -1

第二の反応機構を示す(Scheme 40)。過去の二酸化硫黄等価体を用いるスルフィン酸 塩合成の報告例 ¹⁸⁾から、本反応条件下でもスルフィン酸塩が生成する可能性が考えら れる。したがって、先ほどの反応機構と同様に、基質の Pd(0)への酸化的付加および 二酸化硫黄の挿入後、トランスメタル化によってスルフィン酸塩が生成すると想定し た。その後、スルフィン酸塩からスルフィンアミドが生成する反応機構として、2 通り の反応機構を考察した。一つ目の反応機構は、スルフィン酸塩がプロトン化されてス ルフィン酸が生成し、分子内脱水縮合によってスルフィンアミドが生成すると考えた (path A)。二つ目の反応機構として、過去にカルボン酸と二酸化硫黄で混合酸無水物を 形成する報告例 ⁴⁶⁾を参考に、スルフィン酸塩と二酸化硫黄が酸無水物を形成すると想 定した。その後、分子内環化反応が進行し、水酸化物イオンより脱離能の高い亜硫酸 イオンの脱離を伴ってスルフィンアミドが生成すると考えた(path B)。またスルフィ ン酸塩生成に伴い生じた Pd(II)種は、先ほどと同様に、添加しているアミンによって Pd(0)が再生すると考えられる。

Scheme 40. Assumed reaction mechanism for formation of sulfinamide -2

II. スルフィンアミドからスルホンアミドへの変換過程

続いてスルフィンアミドからスルホンアミドへの変換の反応機構を示す。これまで の検討から、スルフィンアミドからスルホンアミドへの変換には、2 通りの反応機構が 存在する可能性が示唆された。第一に、K₂S₂O₅もしくはここから生成した二酸化硫黄 と DMSO によってスルフィンアミドが直接酸化され、スルホンアミドへと変換される 経路が考えられる。第二に、実際の実験時に分子状ヨウ素の生成が示唆されたため、 K₂S₂O₅もしくはここから生成した二酸化硫黄と DMSO によってヨウ化物イオンが分 子状ヨウ素へと変換され、分子状ヨウ素と DMSO によってスルフィンアミドがスルホ ンアミドへと変換される経路が考えられる。

第一の反応機構を示す(Scheme 41)。これまでの報告例 45)において、K₂S₂O₅ と DMSO による酸化の詳細な反応機構は述べられていないが、ピロ亜硫酸イオンもしくは加熱 によって生成した二酸化硫黄と DMSO によって活性種 a が生成すると想定した。活性 種 a に対し、スルフィンアミドが攻撃し、中間体 b が生成した後に、DMSO による求 核攻撃でジメチルスルフィドと亜硫酸イオンの脱離を伴って、中間体 c が生成する。 その後、亜硫酸イオンによって DMSO の酸素原子がスルフィンアミドへと導入され、 スルホンアミドが生成すると考えられる。

Scheme 41. Assumed reaction mechanism for formation of sulfonamide from sulfinamide -1

第二の反応機構を示す(Scheme 42)。第一の反応機構と同様に、活性種 a が生成した 後に、ヨウ化物イオンによる攻撃によって分子状ヨウ素が生成するとともに、ジメチ ルスルフィドと亜硫酸イオンが副生成物として生じると考えられる。生成した分子状 ヨウ素は、スルフィンアミドからの攻撃を受け、中間体 b が生成した後に、DMSO に よる求核攻撃で中間体 c が生成する。その後ヨウ化物イオンの攻撃によってスルホン アミドが生成すると考えられる。また、スルフィンアミドからスルホンアミドへの変 換検討において、Pd 触媒存在下ではヨウ化物イオンと K₂S₂O₅、DMSO の三成分がす べて存在していたときに、最も効率的にスルホンアミドへ変換が確認できていたこと から、本反応機構が、スルホンアミド生成の主な経路である可能性が考えられる。

Scheme 42. Assumed reaction mechanism for formation of sulfonamide from sulfinamide -2

また、本反応において、スルフィンアミドからスルホンアミドへの変換は 1 当量以 上の(*n*-Bu)₃Nの存在で抑制できることがわかっている。この原因としては、第一にア ミン類と二酸化硫黄が電荷移動錯体を形成することによるもの ⁶、第二にアミン類と 分子状ヨウ素との反応によるもの ⁴⁷⁾が可能性として考えられる。これらによって、二 酸化硫黄や分子状ヨウ素がスルフィンアミドの酸化に関与することを阻害されること により、スルホンアミドの生成を抑制していることが考えられる。 本章において、著者は二酸化硫黄等価体を用いる環状スルホンアミドおよびスルフ ィンアミド類の一段階合成法を開発した。

反応条件の最適化の検討結果から、溶媒としてDMSOが最適であることを見出した。 また、塩基としてアミン類の添加およびその当量が本反応に重要であり、特に(*n*-Bu)₃N を1当量用いることでスルホンアミドが選択的に得られ、(*n*-Bu)₃N を2当量用いるこ とでスルフィンアミドが選択的に得られることを見出した(Scheme 43)。

Scheme 43. One-step synthesis of cyclic sulfonamides and sulfinamides using an SO₂ surrogate

さらに、反応機構解明を目指した研究によって、本反応はスルフィンアミドを経由 しスルホンアミドへと変換されており、その変換過程において、DMSO が酸化剤とし て機能しており、脱離基であるヨウ化物イオンや二酸化硫黄等価体である K₂S₂O₅がこ の過程を促進することで、スルホンアミドが生成していることを見出した(Scheme 44)。

Scheme 44. Reaction pathway

第二章

二酸化硫黄等価体を用いる対称ジアリールスルホン合成法の開発

第一節:ジアリールスルホン類の合成法

ジアリールスルホン類は、医薬品やポリマー、有機電子デバイスなど、様々な産業 に利用されているため、その効率的な合成法の開発は社会に大きな影響を与える。 ジアリールスルホン類の一般的な合成法として、ジアリールスルフィドの酸化 ⁴⁸⁾や求電 子置換反応 ⁴⁹⁾を利用した手法が知られている(Scheme 45)。しかし、前者の手法では、 酸化条件に不安定な官能基を有する基質に適用が困難であり、基質によってはスルホ キシドとの混合物となってしまう可能性があるなどの問題点がある。また後者の手法 では適用可能な基質に大幅な制限がある点が大きな問題点である。

そのような中、近年になって、取り扱い容易な基質であるハロゲン化アリールから、 二酸化硫黄等価体を用いて Pd 触媒的にジアリールスルホンを合成する手法が報告さ れた(Scheme 46)。しかしこれらの手法では、強力な塩基であるアルキルリチウムを用 いている点¹⁶⁾や、高価かつ調製に手間のかかるヨードニウム塩を用いている点¹⁸⁾など 改善の余地を残していた。

Scheme 46. Synthesis of diaryl sulfones using SO₂ surrogates.

第二節:本研究の目的

本研究では、Pd 触媒的なスルフィン酸塩の生成とそのアリール化を同一触媒系で一 挙に進行させる、一段階対称ジアリールスルホン合成法の開発を行った。本研究を行 うに当たり、著者は第一章の検討過程で得られた興味深い知見に着目した。分子内反 応を利用したスルホンアミド合成を分子間反応へと発展させることを試みていた際、 目的物であったスルホンアミド体ではなくホモカップリング体である対称ジアリール スルホン体を副生成物として得た(Scheme 47)。

Scheme 47. Preliminary investigation.

この結果および、過去の報告例においてスルフィン酸塩のアリール化や、ハロゲン 化アリールからのスルフィン酸塩の合成はどちらも Pd 触媒的に進行していることか ら、より適切な触媒系を設計することにより、効率的に対称ジアリールスルホン体が 得られるのではないかと考え、その詳細を検討することとした(Scheme 48)。

Scheme 48. Synthetic strategy.

第三節:反応条件の検討

初期反応条件の設定のため、検討を行った(Table 11)。Pd 触媒として Pd(OAc)₂、配 位子として P(t-Bu)₃·HBF₄、二酸化硫黄等価体として K₂S₂O₅、還元剤として iPr₂NEt、 溶媒として MeCN を用い、反応温度 80 ℃の条件下で検討を行ったところ、25%の収 率で 82 が得られた(entry 1)。続いてアンモニウム塩の添加を行ったところ、収率の 改善はみられなかった(entry 2)。また、配位子を XPhos や XantPhos として検討を行 ったが、目的物を得られない結果となった(entries 3, 4)。この結果から初期反応条件 として配位子は P(t-Bu)₃·HBF₄が適していると判断した。さらに iPr₂NEt を 3 当量に 増量したところ、収率の改善がみられた(entry 5)。以上の検討から、entry 5 の反応条 件を初期反応条件に設定した。

Table 11. Initial study

溶媒の検討を行った(Table 12)。その結果、DMF や DMSO、1,4-dioxane において 比較的良好な収率で 82 が得られた(entries 1, 2, 4)。この結果に関しては、二酸化硫 黄等価体や二酸化硫黄、推定反応中間体であるスルフィン酸塩の溶解性に起因してい る可能性が考えられる。一方、過去に二酸化硫黄等価体を用いるスルフィン酸塩の合 成において有用だと報告されている *i*PrOH¹⁸⁾や、低極性溶媒であるトルエンを溶媒と した場合、収率が大幅に低下した(entries 5, 6)。さらに本反応は無溶媒条件下でも反 応が進行することを確認している(entry 7)。これまでの二酸化硫黄等価体を用いる Pd 触媒的なスルフィン酸塩の合成法において、*i*PrOH や DMSO など極性溶媒を用いてい る例が多く報告されていることから、スルフィン酸塩が推定反応中間体である本反応 においても極性溶媒が適していたと考えられる^{17) 18)}。なお、これらの検討において、 副生成物としてスルフィド体 83 とビフェニル体 84 を確認している。以上の検討から DMF、DMSO、1,4-dioxane において最もよい収率で 82 を与えることがわかった。さ らに、溶媒の検討において良い結果を示した 3 種類の溶媒それぞれにおいて、反応温 度の検討を行った。DMF においては 100 ℃まで昇温することで収率が 73%まで向上 した(entries 9–11)。それに対し、DMSO を溶媒として用いた場合は昇温による収率の 改善は確認できず、1,4-dioxane の場合は昇温による反応性の向上が確認できたが、 DMF を溶媒としていたときには及ばなかった(entries 8, 12–13)。以上の検討から、本 反応における最適溶媒を DMF、最適反応温度を 100 ℃とした。

			yield (%)			
entry	solvent	temp. (°C)	82	recovered 81	83 ^a	84 ^a
1	DMSO	80	49	_	12	2
2	DMF	80	49	<6	15	trace
3	MeCN	80	33	36	trace	trace
4	1,4-dioxane	80	49	10	_	7
5	<i>i</i> PrOH	80	<26	51	trace	trace
6	toluene	80	<15	63	_	_
7	-	80	27	45	2	1
8	DMSO	90	48	—	9	trace
9	DMF	90	67	—	13	8
10	DMF	100	73	—	7	6
11	DMF	110	72	—	5	9
12	1,4-dioxane	90	65	_	trace	5
13	1,4-dioxane	100	48	_	4	16

^a Estimated from ¹H-NMR of the crude mixture.

続いて二酸化硫黄等価体の検討を行った(Table 13)。まず $K_2S_2O_5$ の当量の検討を行ったところ、その当量が増加するに従って、82の収率が悪化および、84の生成量が 増加する結果となった(entries 6, 7)。82の収率低下の原因として、二酸化硫黄等価体 の増量に伴って、スルフィン酸塩の生成に基質が過剰に消費されることによって、ス ルフィン酸塩のアリール化に利用可能な81が不足してしまったこと、二酸化硫黄が配 位子として機能してしまい、 $P(t Bu)_3 \cdot HBF_4$ が十分に機能できなかったことなどが可 能性として考えられる。そこで、 $K_2S_2O_5$ の当量を減量したところ、目的物の収率の改 善がみられ、0.75 当量において82が81%で得られた(entry 2)。また本検討によって、 本反応条件では1当量の $K_2S_2O_5$ から1当量以上の二酸化硫黄が生成している可能性が 示された(entries 1, 2)。さらに二酸化硫黄等価体の種類の検討を行ったところ、 Na₂S₂O₅では目的物の収率の低下が確認できた(entry 8)。この原因としては、 $K_2S_2O_5$ に比べ Na₂S₂O₅の有機溶媒への溶解性が低いことが考えられる。一方、DABSOを用 いた場合、82の収率は大幅に低下し、84 および、これまでほとんど生成していなか ったスルフィド体 83 が多く得られるという興味深い結果が得られた(entry 9)。

Table 13. Effect of SO₂ surrogates

^a Estimated from ¹H-NMR of the crude mixture.

配位子の検討を行ったところ、興味深い配位子効果を示すことがわかった(Table 14)。 単座ホスフィン配位子および二座ホスフィン配位子に関わらず、P(*t*-Bu)₃ 以外の配位 子では、目的物である82がほとんど生成せず、ビフェニル体84が主に得られる結果 となった(enties 1-9)。特に、ホスフィン上の置換基として t-Bu 基を二つ有する **t**-BuXPhos や JohnPhos においても 82 はほとんど生成せず、副生成物 84 を与える 結果となったため、本反応において、配位子の嵩高さが反応性に非常に重要であるこ とが示唆された(entries 5, 6)。また、ホスフィン配位子以外にも、2,2'-ビピリジンや NHC 配位子においてもほとんど目的物が得られなかった(entries 10, 11)。さらに配位 子を用いない条件下でも反応は進行したが、目的物は得られず、84 が主に得られる結 果となった(entry 12)。以上の結果から、配位子の嵩高さによってもたらされる還元的 脱離の促進などが、目的物であるジアリールスルホン体の生成に重要であると考えら れる。また、その他の配位子の結果と、配位子を用いない条件の結果が類似している ことから、P(+Bu)3以外の配位子は反応促進に関与できていない可能性が考えられる。 さらに種々の 2 価の Pd 触媒や 0 価の Pd 触媒を検討したが、Pd(OAc)2の結果には及 ばなかった(entries 13-17)。また本反応には Pd 触媒が必須であることも確認できた (entry 18)。また、反応時間を5時間および25時間で検討を行ったところ、20時間の ときと大差ない収率で82を得る結果となったことから、本反応の反応時間が20時間 で充分であることがわかった(entries 18, 19)。

Table 14. Effect of ligands and Pd catalysts

				yield (%)		
entry	Pd cat.	ligand	82	recovered 81	83 ^a	84
1	Pd(OAc) ₂	P(<i>t</i> -Bu) ₃ ·HBF ₄	81	—	5	7 ^a
2	Pd(OAc) ₂	PCy ₃	_	_	4	54
3	Pd(OAc) ₂	PPh ₃	—	—	trace	44
4	Pd(OAc) ₂	XPhos	trace	_	6	69
5	Pd(OAc) ₂	<i>t</i> -BuXPhos	7	_	2	69
6	Pd(OAc) ₂	JohnPhos	—	—	3	77
7	Pd(OAc) ₂	Ad ₂ PBu	5	_	4	64
8	Pd(OAc) ₂	Xantphos (10 mol%)	—	_	trace	49
9	Pd(OAc) ₂	DPPP (10 mol%)	_	—	3	51
10	Pd(OAc) ₂	2,2'-bpy (10 mol%)	—	17	trace	<18
11	Pd(OAc) ₂	SIPr·HCI	trace	trace	5	59
12	Pd(OAc) ₂	_		_	5	56
13	Pd(MeCN) ₂ Cl ₂	P(<i>t</i> -Bu) ₃ ·HBF ₄	42	—	trace	30 ^a
14	Pd(acac) ₂	P(<i>t</i> -Bu) ₃ ·HBF ₄	59	_	6	13 ^a
15	Pd(cod)Cl ₂	P(<i>t</i> -Bu) ₃ ·HBF ₄	46	—	trace	33 ^a
16	Pd ₂ (dba) ₃ (5.0 mol%) P(<i>t</i> -Bu) ₃ ·HBF ₄	54	—	trace	15 ^a
17		P(<i>t</i> -Bu) ₃ ·HBF₄	_	66		
18 ^b	Pd(OAc) ₂	P(<i>t</i> -Bu) ₃ ·HBF ₄	71	_	4	11 ^a
19 ^c	Pd(OAc) ₂	P(t-Bu) ₃ ·HBF ₄	79	_	3	6 ^a

^a Estimated from ¹H-NMR of the crude mixture. ^b 5.0 h. ^c 25 h.

続いて還元剤の検討を行った(Table 15)。これまで用いてきた *i*Pr₂NEt を NEt₃ とした場合、**82**の収率は大幅に低下し、副生成物である**83**や**84**の収率が増加する結果となった(entry 2)。さらに、アミン類以外の還元剤であるギ酸ナトリウムを添加したところ、低収率ではあるが**82**を得ることができた(entry 3)。一方、DABCOを用いた場合や還元剤を用いない条件の場合、原料回収という結果となった(entries 4, 5)。したがって、本反応において、*i*Pr₂NEt が有効な還元剤であることがわかった。

Table 15. Effect of reductants

^a Estimated from ¹H-NMR of the crude mixture.

これまでの検討では、脱離基としてヨード基を有する基質を用いてきたが、脱離基 の種類が本反応に及ぼす影響を検討した(Table 16)。その結果、ブロモ基を有する基質 においても本反応は円滑に進行し、高収率で目的物であるジアリールスルホン体を得 ることができた(entry 2)。一方、クロロ基や OTf 基を有する基質においては原料回収 となった(entries 3, 4)。P(*t*·Bu)₃が配位子の場合、脱離基として OTf 基を有する基質 との反応性が悪いという報告例があることから ⁵⁰、配位子を DPPP に変更し検討を行 ったが、82 は得られず、脱ハロゲン化体のアニソールを確認するのみであった(entry 5)。さらに、本反応では無機塩を用いていることから、塩化テトラブチルアンモニウ ム(TBAC)の添加による効果を検討したが、原料回収となってしまった(entry 6)。以上 の検討から、本反応はヨードアレーン類およびブロモアレーン類に有用であることが わかった。

Table 16. Effect of leaving groups

			_	yield (%)		
entry	X	ligand	82	recovered SM	83 ^a	84 ^a
1	I	P(<i>t</i> -Bu) ₃ ∙HBF ₄	81	_	5	7
2	Br	P(<i>t</i> -Bu) ₃ ·HBF₄	89	6 ^a	trace	trace
3	CI	P(<i>t</i> -Bu) ₃ ·HBF₄	—	57	_	-
4	OTf	P(<i>t</i> -Bu) ₃ ∙HBF ₄	-	85	_	_
5 ^b	OTf	DPPP	_	_	_	_
6 ^c	OTf	DPPP	—	52	—	8

^a Estimated from ¹H-NMR of the crude mixture. ^b Anisole was detected.

^c TBAC (1.0 eq.) was added.

第一項:基質合成

基質の合成を行った(Scheme 49)。4-ヨードフェノールおよび 4-ブロモフェノールの ヒドロキシ基をベンジル化することで、85 および 86 をそれぞれ 81%、97%で合成し た⁵¹⁾。87 は、*N*,*N*-ジメチルアニリンのパラ位をヨード化することで 62%の収率で合 成した⁵²⁾。さらに 88 は 5-ブロモ-2-ヒドロキシアセトフェノンのヒドロキシ基をメチ ル化することで合成⁵³⁾し、*o*-アニス酸メチルのメトキシ基のパラ位をブロモ化するこ とで 89 を合成した⁵⁴⁾。

Scheme 49. Preparation of substrates 85, 86, 87, 88, and 89.

前節で見出した最適条件を用い、ヨードアレーン類およびブロモアレーン類の基質 一般性の検討を行った。

まず一置換ヨードアレーン類および一置換ブロモアレーン類の検討を行った(Table 17)。パラ位に置換基を有する種々の基質を検討したところ、電子供与性置換基を有す る基質において良好な収率で対称ジアリールスルホン体を得られ、メチル基など、電 子的な影響の小さい置換基においても中程度の収率で対称ジアリールスルホン体が得 られることがわかった(entries 1-11)。特に、本反応は無保護のアミノ基やヒドロキシ 基を有する基質においても問題なく目的物である対称ジアリールスルホン体が得られ ている点が興味深い(entries 2, 5, 9)。また、ジアリールスルフィドの酸化によるスル ホン合成では直接合成が困難なチオエーテル部位を有する基質においても問題なく反 応が進行することを確認している(entry 6)。一方、電子求引性置換基を有する基質に おいては反応性の大幅な変化がみられ、目的物である対称ジアリールスルホン体はほ とんど得られず、副生成物であるビフェニル体を主に得る結果となった(entries 12-15)。しかし、4-ブロモアセトフェノンを基質として用いたときにみの低収率では あるが対称ジアリールスルホン体が得られた(entry 13)。 続いてメタ位に置換基を有す る基質を検討したところ、パラ置換体のときと同様に、電子供与性置換基を有する基 質や無保護のアミノ基、ヒドロキシ基を有する基質において良好な収率で対称ジアリ ールスルホン体が得られた (entries 16-19)。しかし、電子求引性置換基を有する基質 は、パラ置換体と同様に対称ジアリールスルホン体は生成せず、ビフェニル体が主に 得られる結果となった(entry 20)。さらにオルト位に置換基を有する基質を検討したと ころ、これまで良好な結果を示していた電子供与性置換基を有する基質においてもビ フェニル体を主に得る結果となった(entries 21-24)。この結果から、本反応は立体障 害の影響を強く受けることがわかった。

Table 17. Substrate scope (monosubstituted haloarenes)

	Pd(OAc) ₂ (10 mol%) P(<i>t</i> -Bu) ₃ ·HBF ₄ (20 mol%) K ₂ S ₂ O ₅ (0.75 eq.) <i>i</i> Pr ₂ NEt (3.0 eq.)	0,0
Ar-X (2.0 eq.)	DMF, 100 °C, 20 h	Ar ^S Ar

ontry	sub	strato	produc		+	yield (%)		
entry	505	Sirale		produc	,L	X= I	X= Br	
1		R = NMe ₂			90 : R = NMe ₂	69	91 ^a	
2		$R = NH_2$			91 : R = NH ₂	46	58	
3		R = OMe			82 : R = OMe	81 (7 ^b)	89 (trace ^b)	
4		R = OBn			92 : R = OBn	68	69	
5		R = OH			93 : R = OH	74	83	
6		R = SMe			94 : R = SMe	not tested	56	
7	X	R = Me	0,0		95 : R = Me	58	82	
8		R = TMS			96 : R = TMS	not tested	71	
9	R´ 🏏	$R = CH_2OH$	R	R	97 : R = CH ₂ OH	not tested	63 ^a	
10		R = H			98 : R = H	38 (59 ^b)	58 (9 ^b)	
11		R = Ph			99 : R = Ph	not tested	69	
12		R = Cl			100 : R = Cl	not tested	19 (57 ^b)	
13		R = Ac			101 : R = Ac	0 (66 ^b)	13 (41 ^b)	
14		$R = CF_3$			102 : R = CF ₃	0 (69 ^b)	0 (37 ^b)	
15		R = CN			103 : R = CN	0 (80 ^b)	not tested	
16		$R = NH_2$			104 : R = NH ₂	not tested	50	
17	R ^ X	R = OMe	O O		105 : R = OMe	21	68	
18		R = OH		R	106 : R = OH	not tested	59	
19		R = Me			107 : R = Me	74	77	
20		$R = CF_3$			108 : R = CF ₃	0 (<60 ^b)	0 (<27 ^b)	
21	D	R = NH ₂	Paa		109 : R = NH ₂	not tested	0	
22	X	R = OMe		Ĭ.	110 : R = OMe	0 (<82 ^b)	0 (39 ^b)	
23		R = OH			111 : R = OH	0	0	
24		R = Me			112 : R = Me	0 (<67 ^b)	0 (<36 ^b)	

^a 120 °C, ^b Yield of biaryl compounds.

本反応では、電子求引性置換基を有する基質において目的物であるジアリールスル ホン体はほとんど得られず、ビフェニル体を主生成物として得る結果となっていた。 一方、脱離基がブロモ基である 113 を基質として用いたときに低収率ながらジアリー ルスルホン体 101 を得ることができた。脱離基がヨード基の場合は全くジアリールス ルホン体を得られなかったことから、脱離基であるブロモ基由来の臭化物イオンがジ アリールスルホン体の生成に優位に働いている可能性が考えられた。そこで臭化物イ オン源として臭化カリウム(KBr)および臭化テトラブチルアンモニウム(TBAB)を添加 し検討を行った(Table 18)。臭化カリウム(KBr)を用いた場合、反応性にほとんど変化 はなかった (entry 2)。これは臭化物イオン源の溶解性の低さが原因であると考え、有 機溶媒へ溶解性が高い臭化テトラブチルアンモニウム(TBAB)を用いたが、ほとんど原 料回収という結果となった(entry 3)。以上の結果から、臭化物イオンの添加による優 位な結果は得られなかったため、目的物であるジアリールスルホン体が得られたこと への臭化物イオンの関与の可能性は低いと考えられる。

^a Calculated yield by ¹H-NMR.

一置換ハロアレーン類の検討において、ヨードアレーン類に比べ、ブロモアレーン 類の方が良い反応性を示していたことから、二置換ハロアレーンやヘテロ環を有する 基質においてはブロモアレーン類に焦点を当てて検討を行った(Table 19)。パラ位とメ タ位にメトキシ基を有する基質で検討を行ったところ、良好な収率で対称ジアリール スルホン体が得られた(entry 1)。また本反応は電子求引性置換基を有する基質におい て目的物である対称ジアリールスルホン体がほとんど得られていなかったが、電子供 与性置換基であるメトキシ基をパラ位に有する基質であれば、電子求引性置換基が芳 香環に存在していても目的物が得られることがわかった(entries 2, 3)。さらにナフタ レン骨格やインドール骨格を有する基質においても、本反応は円滑に進行することを 確認している(entries 4-6)。これまでの検討で、電子供与性置換基を有する基質にお いて、本反応が良好に進行することがわかった。そこで電子豊富なヘテロ環であるチ オフェン骨格を有する基質で検討を行ったが、目的物である対称ジアリールスルホン 体は得られず、副生成物であるビアリール体を得るのみであった(entries 7, 8)。一方、 電子不足なヘテロ環であるピリジン骨格を有する基質で検討を行ったところ、これま での検討と同様の傾向を示し、目的物である対称ジアリールスルホン体は得られず、 副生成物であるビアリール体を得る結果となった(entry 9)。以上のように、ヘテロ環 を有する基質においては、本反応の適用が困難である場合が多いことがわかった。

	Pr Ar—Br — (2.0 eq.)	Pd(OAc) ₂ (10 mol%) $P(t-Bu)_3 \cdot HBF_4$ (20 mol%) $K_2S_2O_5$ (0.75 eq.) <i>iPr</i> ₂ NEt (3.0 eq.) DMF, 100 °C, 20 h Ar Ar	
entry	substrate	product	yield (%)
1	MeO MeO	MeO MeO MeO OMe	116 78
2	Ac Br MeO	Ac MeO Ac MeO Ac OMe	117 52
3	MeO ₂ C Br MeO	MeO ₂ C MeO MeO	118 51
4 5	R = H R = OH	R R R	119 : R = H 67 120 : R = OH 61
6	Br	O O S NH HN	121 76
7	S Br		122 0 (<20 ^a)
8	Br	o o s S S S	123 0 (52 ^a)
9	N Br		124 0 (73 ^a)

Table 19. Substrate scope (disubstituted haloarenes and heterocyclic compounds).

^a Yield of biaryl compounds.

第五節:反応機構に関する検討

過去の報告例^{16,18)}から、著者は本反応の反応機構として、スルフィン酸塩を経由す る反応機構を想定している(Scheme 50)。即ち、ハロゲン化アリールの Pd 触媒的なス ルフィン酸塩の生成が進行する(cycle A)とともに、生成したスルフィン酸塩の Pd 触媒 的なアリール化が進行する(cycle B)ことによって、対称ジアリールスルホン体へと変 換されていると想定した。また、副生成物のビフェニル体は、スルフィン酸塩のアリ ール化の段階において、スルホニル Pd 中間体からの二酸化硫黄の脱離によって生成し ていると想定した。この仮説に基づいて、反応機構に関する検討を行った。

Scheme 50. Assumed reaction mechanism

本反応における主要な副生成物であるビフェニル体の生成に二酸化硫黄等価体が関 与しているか確認するため、二酸化硫黄等価体を添加しない条件下で検討を行った (Scheme 51)。副生成物が主に得られていた 125 を基質として用い、検討を行ったと ころ、副生成物である 115 は低収率でしか得られず、主に原料回収という結果となっ た。したがって本反応におけるビフェニル体の主な生成過程にも二酸化硫黄等価体が 関与していると考えられる。

Scheme 51. Effect of $K_2S_2O_5$ for generation of **115**.

さらに、副生成物であるビフェニル体の生成経路として、ジアリールスルホン体から Pd 触媒的に生成している可能性が考えられた(Scheme 523。具体的には、電子求引性置換基によって、ジアリールスルホン体の C-S 結合の Pd(0)への酸化的付加が進行しやすくなり、一度生成したジアリールスルホン体が再び Pd(0)へ酸化的付加し、その後に二酸化硫黄の脱離および還元的脱離が進行することで、副生成物であるビフェニル体が生成していると考えた。またビフェニル体生成時の還元的脱離による C-C 結合形成が不可逆過程であるため、副生成物であるビフェニル体が主生成物となったと推定した。

Scheme 52. Possible reaction pathway for generation of biaryl compounds.

そこで、まず電子求引性置換基としてアセチル基を有する対称ジアリールスルホン 101 を別途合成した(Scheme 53)。既知の合成法に従い、125 を基質とし、Pd 触媒的 に対称ジアリールチオエーテル 126 へ変換後 ⁵⁵⁾、126 を酸化すること ⁵⁶⁾で対称ジア リールスルホン 101 を合成した。

Scheme 53. Preparation of diaryl sulfone 101.

合成した **101** を基質とし、見出した最適条件下で検討したところ、ビフェニル体は 確認できず、**101** を 85%で回収する結果となった(Scheme 54)。この結果から、本反 応において一度生成したジアリールスルホンから、Pd 触媒的に副生成物であるビフェ ニル体へと変換されてはいないと考えられる。

Scheme 54. Attempted conversion to **115** from **101**.
続いて、本反応の推定反応中間体であるスルフィン酸塩を基質として用い、本反応 条件下、ジアリールスルホン体やビフェニル体が得られるか種々検討を行った。

スルフィン酸塩として 127、ハロゲン化アリールとして 81 を用い、最適条件下検 討を行ったところ(X=0.75)、良好な収率で 128 を得た(Scheme 55)。この結果は、本 反応においてスルフィン酸塩を経由して対称ジアリールスルホン体が生成しているこ とを支持する結果である。また副生成物として 127 由来の対称ジアリールスルホンが 得られていることから、本反応においてスルフィン酸塩からの二酸化硫黄の脱離がわ ずかに進行していることが示唆された。さらに、81 由来の対称ジアリールスルホンの 収率が低いこと、二酸化硫黄等価体を添加しない条件下(X=0)でも同様の結果を得ら れたことから、81 からのスルフィン酸塩の生成速度に比べ、スルフィン酸塩のアリー ル化の速度の方が高く、スルフィン酸塩のアリール化の段階に二酸化硫黄の関与はほ とんどないと考えられる。

Scheme 55. Reaction of sulfinate 127 with iodoarene 81.

配位子検討において副生成物であるビフェニル体が主に得られていた JohnPhos を 配位子として用い検討を行った(Scheme 56)。最適条件下で検討を行った結果(X = 0.75)、128 はこれまでの検討結果と同様に得られなかったが、副生成物であるビフェ ニル体もほとんど得られない結果となり、これまでの検討結果と矛盾した。またマス バランスが大幅に悪化してしまった。この結果は、推定反応機構(Scheme 48)の cycle B で使われるべき 81 が cycle A で使われてしまったことが原因ではないかと考え、二酸 化硫黄等価体を添加せずに検討を行ったところ(X = 0)、3種のビフェニル体を合わせ て中程度の収率で得る結果となった。

以上の結果から、本反応においてジアリールスルホン体は、スルフィン酸塩のアリ ール化を経由していること、このアリール化の段階は、配位子の効果を大きく受け、 P(*t*-Bu)₃·HBF₄がスルホニル Pd 種からの二酸化硫黄の脱離を抑制し、他の配位子では 二酸化硫黄の脱離を抑制できないことが推測される。 本反応において電子求引性置換基を有する基質を用いると、副生成物であるビフェ ニル体が主に得られていた。そこで、電子求引性置換基を有するスルフィン酸塩とヨ ードアレーンを用い、本反応条件下でビフェニル体が主生成物となるか検討した (Scheme 57)。スルフィン酸塩として 129、ヨードアレーンとして 125 を用い、最適 条件下で検討を行ったところ(X = 0.75)、ジアリールスルホン体およびビフェニル体の どちらも低収率となった。この結果も、先の検討と同様に、推定反応機構(Scheme 49) の cycle B で使われるべき 125 が cycle A で使われてしまったことが原因だとと考え、 二酸化硫黄の等価体を添加しない条件下で検討を行ったところ(X = 0)、ビフェニル体 の収率が向上する結果となった。この結果から、本反応における電子求引性置換基を 有する基質でのビフェニル体は、スルフィン酸塩を経由して生成していることが示唆 された。

<12% (X = 0.75) 9% (X = 0)

5% (X = 0.75) 3% (X = 0)

Scheme 57. Reaction of sulfinate 129 with iodoarene 125

これまでの検討により、副生成物であるビフェニル体は主にスルフィン酸塩を経由 して生成しており、二酸化硫黄等価体の存在はこの過程を阻害することが示唆された。 そこで、スルフィン酸塩として 131、ブロモアレーンとして 132 を用い、基質一般性 における結果と比較検討することとした。二酸化硫黄等価体を添加しない条件で検討 を行ったところ(Scheme 58a)、ジアリールスルホン体 100 を 18%、ビフェニル体 134 を 59%で得た。この結果は、基質一般性の検討における 132 を基質としたときの結果 (Scheme 58b)とほぼ一致したことから、この結果は、本反応がスルフィン酸塩を経由 して進行しており、スルフィン酸塩のアリール化の段階で副生成物であるビフェニル 体が生成していることを支持するものだと考えられる。

Scheme 58. Reaction of sulfinate **131** with bromoarene **132** compared with the reaction of **132**

さらに、本反応では副生成物としてスルフィド体が得られていた。そこで、スルフ ィド体から目的物への変換が本反応条件下で進行するか確認を行った(Scheme 59)。 83を基質とし、本反応条件下で検討を行ったところ、対称ジアリールスルホン体 82 は得られず、83をほぼ定量的に回収する結果となった。この結果から、本反応におい てスルフィド体からスルホン体への変換は進行していないと考えられる。

Scheme 59. Attempted conversion to 82 from 83

以上の検討から、本反応の反応機構としては、当初の想定通り、スルフィン酸塩を 経由するメカニズムであると考えられる(Scheme 60)。基質の Pd(0)への酸化的付加お よび二酸化硫黄の挿入により、中間体 b を形成後、配位子交換によりスルフィン酸塩 C を生成する。生成したスルフィン酸塩 C は中間体 a とトランスメタル化によって中 間体 d を形成後、還元的脱離が進行することで、目的物である対称ジアリールスルホ ン体が得られる。最適配位子である P(*t*Bu)₃は、この還元的脱離を強く促進したため、 対称ジアリールスルホン体が得られたと考えられる。一方、その他の配位子を用いた 場合は、還元的脱離の速度が十分でなく、二酸化硫黄の脱離が先に進行してしまった ために、副生成物であるビフェニル体が生成したと推測している。また電子求引性置 換基を有する基質を用いた場合、中間体 d において Pd(II)が電子不足な状態となり、 還元的脱離が比較的進行しにくくなったため、二酸化硫黄の脱離が先に進行してしま い、副生成物であるビフェニル体が生成したと考えられる。

Scheme 60. Assumed reaction mechanism

第六節:分子内反応への応用

これまで述べてきたジアリールスルホン合成法の分子内反応への展開を試みた。具体的には、2,2'位に脱離基を有するビフェニル体を基質として用い、環状スルホン体の 合成の検討を行おうと考えた(Scheme 61)。

Scheme 61. Synthetic strategy

このような環状スルホン体の二酸化硫黄等価体を用いる合成法は、2017 年 Jiang ら によって報告されたヨードニウム塩を基質とする手法の一例のみである(Scheme 62)²²⁾。しかし、この報告では高価かつ調製に手間のかかるヨードニウム塩を基質とし て用いていることから、より汎用性の高い基質からの合成が望まれる。そこで、著者 が前節までに見出した手法を分子内反応へと応用できれば、より取り扱いや調製が容 易な基質から環状スルホン体が合成できると考えた。また、この骨格の類縁体は、有 機電子デバイスとして応用されていることから、本手法の分子内反応への展開により、 高機能材料の開発への貢献が期待される。

まず分子間反応で得られた条件を用い、分子内反応の初期条件の探索を行った。2,2' 位にブロモ基を有するビフェニル体を用い検討を行ったが、目的物は得られなかった (Scheme 63)。前節までの検討において、オルト位に置換基を有する基質ではスルホン 体が全く得られていないことを考慮すると、本反応条件を直接分子内反応へと応用す ることは困難であることが予想された。

Scheme 63. Initial study - 1

そこで、対称ジアリールスルホン合成検討の初期反応条件を用い、初期検討を行う こととした(Table 20)。2,2'位にトリフラート基を有する基質を用い、配位子を数種類 検討したところ、二座配位子において低収率だが **136** を得ることができた(entries 2-4)。また、テトラブチルアンモニウムクロリド(TBAC)を添加しない条件下では全く 目的物が得られず、TBACを4当量に増量すると収率の向上が確認できた(entries 5, 6)。 したがって entry 6 の条件を初期条件とし、各反応条件の検討を行うこととした。

$\begin{array}{c} Pd(OAc)_{2} (10 \text{ mol\%}) \\ \textbf{ligand} (Pd/P= 1/2) \\ K_{2}S_{2}O_{5} (1.5 \text{ eq.}) \\ \hline \\ \text{OTf} \\ \text{TFO} \end{array} \xrightarrow{(Pr_{2}\text{NEt} (2.0 \text{ eq.}))} \\ TBAC (1.0 \text{ eq.}) \\ \hline \\ \text{MeCN} (0.50 \text{ M}), 80 \text{ °C}, 20 \text{ h} \end{array}$				
135	135			
entry	ligand		recovered 135	
1	P(<i>t</i> -Bu) ₃ ·HBF ₄		<89	
2	DPPP	15	47	
3	DPPB	<11	46	
4	DPPF	10	69	
5 ^a	DPPP	_	23	
6 ^b	DPPP	27	28	

Table 20. Initial study -2

^a in the absence of TBAC. ^b TBAC (4.0 eq.).

初期検討において、本反応では第4級アンモニウム塩の添加が重要であるとわかったため、有機溶媒への溶解性が重要なファクターであると考え、第4級アンモニウム 塩や溶媒の検討を行った(Table 21)。なお、本反応における副生成物として、137 が 生成していることを確認している。まず第4級アンモニウム塩のカウンターアニオン の検討を行ったところ、カウンターアニオンが塩化物イオンのTBACを用いたときに のみ136が得られ、臭化物イオンおよびヨウ化物イオンをカウンターアニオンとする アンモニウム塩では136がほとんど得られず、原料回収という結果となった(entries 1-3)。続いて、カウンターアニオンを塩化物イオンとし、種々のアンモニウム塩の検 討を行った。ブチル基より短いアルキル鎖を有するテトラアルキルアンモニウム塩や、 BTEACのようなアンモニウム塩を用いた場合、収率が低下する結果となった(entries 4-6)。以上の検討から、本反応においてカウンターアニオンが塩化物イオンの第4級 アンモニウム塩を用いることが、136を得るために必須であることがわかった。

続いて、TBAC を最適なアンモニウム塩として、溶媒の検討を行った。その結果、 非プロトン性極性溶媒において反応の進行が確認できたが、これまで用いてきた MeCN を溶媒とした際の収率を上回る結果は得られなかった(entry 7–9)。また *i*PrOH や低極性溶媒を用いると、反応はほとんど進行せず、原料回収という結果となった (entries 10–13)。以上の結果から、前節の検討の際と同様に、本反応には非プロトン 性極性溶媒が適しているが、溶媒による大幅な反応性の変化は確認できなかった。ま た溶媒を MeCN とした条件下、溶解性の改善および本反応が分子内反応であることを 考慮し、反応溶液の濃度を低くすることによる反応性の改善を期待したところ、目的 物の収率に変化はなかったが、副生成物 **137**の生成を抑制することができた(entry 14)。

	OTf TfO 135	Pd(OAc) ₂ (10 mol%) DPPP (10 mol%) K ₂ S ₂ O ₅ (1.5 eq.) <i>i</i> Pr ₂ NEt (2.0 eq.) ammonium salt (4.0 e solvent (0.50 M) 80 °C, 20 h) eq.)	0, 0 S 136		OTf HO 137
entry	ammonium sa	lt solvent		yield (%)		
	annionium sa		136	recovered 135	137	
1	TBAC	MeCN	27	28	<27	
2	TBAB	MeCN	trace	76	13	
3	TBAI	MeCN	_	81	8	
4	TEAC	MeCN	25	24	30	
5	TMAC	MeCN	9	49	8	BIEAC
6	BTEAC	MeCN	<15	47	<26	
7	TBAC	DMSO	20	39	32	-
8	TBAC	DMF	15	39	37	
9	TBAC	DMA	<9	44	37	
10	TBAC	<i>i</i> PrOH	_	95	trace	
11	TBAC	1,4-dioxane	trace	80	13	
12	TBAC	1,2-DCE	trace	90	trace	
13	TBAC	toluene	_	81	16	
14 ^a	TBAC	MeCN	28	52	<15)

^a 0.0625 M.

続いて種々の単座ホスフィン配位子、二座ホスフィン配位子を用い検討を行った (Table 22)。その結果、本反応は単座ホスフィン配位子では全く **136** が得られず、二 座ホスフィン配位子を用いたときに **136** が生成することがわかった。また、二座ホス フィン配位子の中でも、二つのホスフィン同士がアルキル鎖で架橋された配位子にお いて、比較的良好な結果を示した(entries 5–11)。さらに、添加剤の検討を行ったとこ ろ、還元剤であるギ酸ナトリウムを添加することで収率の向上が確認できた(entry 12)。 しかし、トリエチルシランやマンガンといった還元剤を添加したところ、反応性の悪 化が確認できた(entries 13, 14)。

81

続いてアミンの検討を行った(Table 23)。まず各種第三級アミンの検討を行ったところ、 iPr_2NEt を用いたときに最もよい収率で**136**が得られた (entries 1–6)。続いて、 第二級アミンである iPr_2NH を用いた場合、 iPr_2NEt を用いていた時には劣るものの、 38%の収率で目的物が得られた(entry 7)。ピリジンや DMAP といった芳香族型アミン を用いたときは、反応性が低く、原料回収率の増加が確認できた(entries 8, 9)。その 他にも DABCO や DBU を用いたが、反応性の低下が確認された(entries 10–12)。さ らにアミン類を添加せず、還元剤として HCO₂Na の添加のみであっても 20%程度目 的物を得られることを確認している(entries 13, 14)。さらに、アミン類の検討におい て比較的良好な結果を示した iPr_2NEt 、NEt₃、BnNMe₂、 iPr_2NH において、HCO₂Na を添加しない条件下で検討したところ、 iPr_2NEt および iPr_2NH を用いたときにのみ **136**が得られた。本反応が触媒回転するためには還元剤が必要であると考えられるた め、この結果から NEt₃ や BnNMe₂ は本反応において還元剤として機能できていない ことが推測される。以上の検討によって、本反応にはトリアルキルアミンが適しており、特に *i*Pr₂NEt やを *i*Pr₂NH において良好に反応が進行することがわかった。

Table 23. Effect of amines

^a HCO₂Na (4.0 eq.). ^b in the absence of HCO₂Na.

続いて触媒の検討を行った(Table 24)。まず触媒を $Pd(dppp)Cl_2 \approx Pd(dppf)Cl_2$ にし たが目的物の収率向上にはつながらなかった(entries 2, 4)。またこれらで用いた触媒 にはすでにホスフィンが配位していることから配位子である DPPP を添加していない 条件で検討を行った(entries 3, 5)。その結果、DPPP を添加していたときに比べ反応 性の改善は確認できたが、これまでの最高収率には届かなかった。また 0 価の Pd 触媒 である $Pd_2(dba)_3$ を用いたが、同様に収率の改善は確認できなかった(entry 6)。さらに Ni 触媒や Cu 触媒をいくつか検討したが反応は全く進行せず原料回収という結果になった(entries 7–9)。また本反応では、原料の残存が確認されていることから、反応時間の延長による効果を検討したところ、Pd(dppp)Cl₂を触媒として用いた際に、収率の改善がみられ(entries 10, 11)、さらに Pd(dppp)Cl₂を触媒とする条件下では、HCO₂Naの添加しない条件下でも、良好な収率で**136**が得られることがわかった。

OTf	$= \underbrace{\begin{array}{c} \text{catalyst (1)} \\ \text{DPPP (10)} \\ \text{K}_2\text{S}_2\text{O}_5 (\\ i\text{Pr}_2\text{NEt (2)} \\ \text{TBAC (4)} \\ \text{HCO}_2\text{Na (2)} \\ \text{MeCN (0.)} \\ 80 \text{ °C}, \end{array}}$	10 mol%) 0 mol%) 1.5 eq.) 2.0 eq.) (2.0 eq.) (2.0 eq.) (2.0 eq.) (2.0 eq.) (2.0 eq.) (2.0 eq.)	C	S S S S S S S S S S S S S S S S S S S	OTf HO
135			1	36	137
entry	catalyst	HCO ₂ Na	136	yield (%) recovered 135	137
1	Pd(OAc) ₂	+	42	33	<16
2	Pd(dppp)Cl ₂	+	26	60	9
3 ^a	Pd(dppp)Cl ₂	+	37	30	9
4	Pd(dppf)Cl ₂ ·CH ₂ Cl ₂	+	29	39	8
5 ^a	Pd(dppf)Cl ₂ ·CH ₂ Cl ₂	+	30	41	3
6	Pd ₂ (dba) ₃ (5.0 mol%)	+	33	<35	4
7	Ni(cod) ₂	+	-	86	trace
8	Ni(dppp)Cl ₂	+	-	88	trace
9	Cu(OTf) ₂	+	.	85	12
10 ^b	Pd(OAc) ₂	+	40	26	16
11 ^{a, b}	Pd(dppp)Cl ₂	+	46	16	<6
12 ^a	Pd(dppp)Cl ₂	-	30	43	4
13 ^{a, b}	Pd(dppp)Cl ₂	-	46	24	<10
14 ^{a, c}	Pd(dppp)Cl ₂	-	43	25	11

^a DPPP was not used. ^b 48 h. ^c 90 h.

以上の検討では、本触媒条件において中程度でしか目的物である環状スルホン体が 得られていない。しかし、塩化テトラブチルアンモニウム(TBAC)を添加による反応性 の大幅な向上などが確認できていることから、さらなる検討により、本反応が環状ス ルホン体の新規合成法となる可能性が期待される。

第七節:まとめ

本章において、著者は二酸化硫黄等価体を用いる対称ジアリールスルホン類の合成法および環状スルホン類合成法の開発に関して述べた。

対称ジアリールスルホン類合成においては、配位子によって反応性の大幅な変化が みられ、P(*t*-Bu)₃を用いたときにのみ、高収率で目的物である対称ジアリールスルホ ン体が得られるという興味深い配位子効果を見出した(Scheme 64)。その他の配位子で は、副生成物であるビフェニル体を主に得る結果となった。さらに基質の電子的・立 体的要因にも大きく依存し、電子供与性置換基を有する基質では、高収率で目的物で ある対称ジアリールスルホン体が得られたが、電子求引性置換基を有する基質や、脱 離基周辺の立体障害が大きい基質においては副生成物であるビフェニル体が主に生成 することがわかった。

以上の検討によって見出した本反応は、ハロゲン化アリールを基質とする Pd 触媒的 なスルフィン酸塩の生成とそのアリール化が同一反応系内で一挙に進行する初の例で あり、対称ジアリールスルホン体を効率よく合成可能な手法である。

Scheme 64. Pd-catalyzed one-step synthesis of symmetrical diaryl sulfones

環状スルホン類合成においては、塩化テトラブチルアンモニウム(TBAC)の添加が必 須であり、TBAC 以外のアンモニウム塩の添加やアンモニウム塩を添加しない条件下 では、ほとんど環状スルホン体が得られないという興味深い反応性をもっていること を見出した(Scheme 65)。本反応は、二酸化硫黄等価体を用いる一段階環状スルホン合 成において、調製容易な 2,2'位に脱離基を有するビフェニル体を基質とした初の例で あり、今後さらなる検討により、収率の向上などが期待される。

Scheme 65. Pd-catalyzed synthesis of cyclic sulfones

結論

炭素原子、酸素原子などにはない硫黄原子の特異な性質から、含硫黄化合物は医薬 品、電子材料、高分子材料など、多方面において活用されている。したがって、含硫 黄化合物の効率的合成法の社会的な重要性は疑いようがない。含硫黄化合物の合成法 の中でも、二酸化硫黄を用いる含硫黄化合物の合成法は、創薬や有機合成化学におけ る重要骨格のスルホニル基・スルフィニル基を分子に導入可能な手法である。しかし、 二酸化硫黄が毒性ガスであることから、安全管理の問題は大きな課題である。そのよ うな中、近年になって、二酸化硫黄をより安全に利用可能な二酸化硫黄等価体を用い るスルホニル基・スルフィニル基含有化合物の合成法が報告されてきたが、未だに基 質の制限など、課題を残している。そこで著者は、二酸化硫黄等価体を用いるスルホ ニル基およびスルフィニル基含有化合物の新規合成法の開発を目的とし、研究に着手 した。

第一章では、二酸化硫黄等価体を用いる環状スルホンアミドおよびスルフィンアミ ド類選択的合成法の開発に取り組んだ(Scheme 66)。検討の結果、本反応の一次生成物 はスルフィンアミド体であり、スルフィンアミド体が酸化されることでスルホンアミ ド体が生成していること、塩基である(*n*-Bu)₃Nの当量によって、スルホンアミド体と スルフィンアミド体の選択性を制御できることを見出した。さらにスルフィンアミド 体からスルホンアミド体への変換には、溶媒のDMSOと脱離基であるヨウ化物イオン の関与によって進行していることを見出した。以上の検討により見出した本反応は、 ハロゲン化アリールを基質とする、二酸化硫黄等価体を利用した初の一段階スルホン アミド合成法であるとともに、二酸化硫黄等価体を利用した初の一段階スルフィンア ミド合成法である。また、本反応では、二酸化硫黄等価体は形式的な一酸化硫黄等価 体として機能している。一酸化硫黄が非常に不安定であり、取り扱いがほとんど不可 能であることを考慮すると、本手法のさらなる発展により、二酸化硫黄等価体の一酸 化硫黄等価体としての利用拡大が期待される。

Scheme 66. Pd-catalyzed selective synthesis of cyclic sulfonamides and sulfinamides

第二章では、二酸化硫黄等価体を用いる Pd 触媒的な対称ジアリールスルホン類の合成法の開発に取り組んだ(Scheme 67)。検討の結果、本反応には配位子効果、基質の電子的・立体的効果が色濃く反映された。配位子効果としては、非常に嵩高い配位子である P(*t*-Bu)₃を用いたときにのみ高収率で目的物である対称ジアリールスルホン体が得られ、その他の配位子では、副生成物であるビフェニル体を主に得るという興味深い結果を得た。さらに、電子供与性置換基を有する基質においては高収率で対称ジアリールスルホン体が得られたが、電子求引性置換基を有する基質や立体障害大きい基質においては、副生成物であるビフェニル体が主に得られることがわかった。以上の検討により見出した本反応は、ハロゲン化アリールを基質とする Pd 触媒的なスルフィン酸塩の生成と、その Pd 触媒的なアリール化が同一反応系内で一挙に進行し、対称ジアリールスルホン体を合成する初の例である。今後、本手法をさらに検討することで、多様な基質に対し適用可能な手法へと発展させれば、より効率的なジアリールスルホン体の合成に貢献できると期待される。

Scheme 67. Pd-catalyzed one-step synthesis of symmetrical diaryl sulfones

さらに、本合成法を分子内反応へ応用した環状スルホン合成にも取り組んだ。その 結果、本反応にはアンモニウム塩の添加が非常に重要であり、塩化テトラブチルアン モニウム(TBAC)を添加することによって、中程度の収率で環状スルホン体が得られる ことを見出した(Scheme 68)。またアンモニウム塩のカウンターアニオンは塩化物イオ ンが適しており、その他のカウンターアニオンを有するアンモニウム塩では環状スル ホン体が得られないという興味深い結果が得られた。今後さらなる検討により、収率 の向上および基質適用範囲の拡大が期待される。

Scheme 68. Pd-catalyzed synthesis of cyclic sulfones

二酸化硫黄等価体を用いるスルホニル基・スルフィニル基含有化合物合成法は、2010 年のWillisらによる二酸化硫黄等価体としてDABSOを用いるN-アミノスルホンアミ ド合成の報告を皮切りに、近年目覚しい発展を遂げている。本手法の高い安全性、反 応の実施が容易であることなどを考慮すると、今後、二酸化硫黄等価体を用いる手法 が、スルホニル基・スルフィニル基含有化合物の一般的な手法となることが期待され る。本論文で述べた研究成果が、その発展の一助となれば幸いである。

実験項

各種機器分析は以下の装置を使用した。

NMR スペクトル	JEOL ECA-500 NMR Spectrophotometer				
	JEOL AL-400 NMR spectrometer				
IR スペクトル	SHIMADZU IR Prestige-21				
MSスペクトル	JEOL JMS-T100TD time-of flight Mass Spectrometer				
	(DART)				
	BRUKER micrOTOF (ESI)				
融点測定	Stanford Research System Opti-Melt MPA 100				

カラムクロマトグラフィーによる生成物の分離には関東化学 シリカゲル 60N (球状、 中性)を用いた。薄層クロマトグラフィー(PTLC)による生成物の分離には Merck Silica Gel 60-F254 0.5 mm シリカゲルプレートを用いた。また、薄層クロマトグラフィー (TLC)による反応のモニタリングと、生成物の確認には Merck Silica Gel 60-F254 シ リカゲルプレートを用いた。

NMR スペクトルは重クロロホルム中、¹H NMR は内部標準物質としてテトラメチル シラン (0.00 ppm) を用いて、また ¹³C NMR では CDCl₃ (77.16 ppm) を基準として 測定した。また、以下に示す略号を用いた。

s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), sept (septet), dd (doublet of doublets), td (triplet of doublets), br (broad), m (multiplet)

Synthetic method of 1–7

2-Iodobenzaldehyde (1) 57)

2-Iodobenzyl alcohol (3.00 g, 12.8 mmol)、MnO₂ (34.5 g, 396 mmol, 30.0 eq.)、 CH₂Cl₂ (36 mL) の混合液を加熱還流下 14 時間撹拌した。その後 MnO₂をセライト濾 過で取り除き、減圧濃縮することで 2-iodobenzaldehyde (2.40 g, 10.3 mmol, 80%, white solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 10.1 (1H, s), 7.96 (1H, d, J = 8.0 Hz), 7.89 (1H, d, J = 7.6 Hz), 7.47 (1H, t, J = 7.6 Hz), 7.27 (2H, m) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 140.7, 135.5, 135.2, 130.3, 128.7, 100.7 ppm.

N-Butyl-2-iodobenzylamine (2)

アルゴン雰囲気下 2-iodobenzaldehyde (1.50 g, 6.46 mmol)、MeOH (43 mL)の混合 液に、氷冷下 *n*-BuNH₂ (0.945 g, 12.9 mmol, 2.00 eq.)をゆっくり加え、30 分間撹拌し た後に室温下にし、撹拌を続行した。3 時間後再び氷冷下にし、NaBH₄ (0.367 g, 9.69 mmol, 1.50 eq)を 10 分間隔で 3 回に分けて加えた。その後室温下で 1 時間撹拌した後 に、溶媒を 1/3 まで濃縮し、水(10.6 mL)と NaHCO₃ (0.540 g) を加え、室温下 10 分 間撹拌した。その後ジクロロメタンで 3 回抽出し、合わせた有機層を K₂CO₃ で乾燥し、 減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(hexane/EtOAc = 2/1)に よって精製し、**1a** (1.66 g, 5.74 mmol, 89%, colorless oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.82 (1H, dd, J = 8.0, 1.2 Hz), 7.38-7.29 (2H, m), 6.95 (1H, td, J = 8.0, 2.0 Hz), 3.80 (2H, s), 2.63 (2H, t, J = 7.2 Hz), 1.48-1.55 (2H,m), 1.41-1.32 (2H, m), 0.92 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 142.5, 139.5, 129.8, 128.8, 128.4, 99.7, 58.4, 49.0, 32.3, 20.6, 14.1 ppm; IR (ATR) 3057, 2955, 2926, 2870, 2859, 2816, 2752, 1730, 1562, 1456, 1435, 1258, 1196, 1103,

1011, 1123 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₁H₁₇IN: 290.0400; found: 290.0400.

N-(Isopropyl)-2-iodobenzylamine (3)

n-BuNH₂の代わりに *i*PrNH₂を用い、2と同様の方法で 3 (92%, yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.82 (1H, d, J = 8.0 Hz), 7.39-7.23 (3H, m), 3.79 (2H, s), 2.85 (1H, sept, J = 6.4 Hz), 1.12 (6H, d, J = 6.4 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 142.7, 139.6, 129.9, 128.8, 128.4, 99.7, 56.3, 48.2, 23.0 ppm; IR (ATR) 3057, 2961, 1562, 1435, 1379, 1319, 1171, 1011 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₀H₁₅IN: 276.0244; found: 276.0249.

N-(tert-Butyl)-2-iodobenzylamine (4)

n-BuNH₂の代わりに*t*-BuNH₂を用い、**2**と同様の方法で**4**(0.624 g, 2.16 mmol, 72%, yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.79 (1H, dd, *J* = 8.0, 1.2 Hz), 7.44 (1H, dd, *J* = 7.6, 1.2 Hz), 7.33-7.29 (1H, m), 6.93 (1H, t, *J* = 6.0 Hz), 3.75 (2H, s), 1.19 (9H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 143.4, 139.3 129.9, 128.6, 128.5, 99.7, 52.0, 50.9, 29.2 ppm; IR (ATR) 3055, 2959, 2901, 2866, 1562, 1462, 1435, 1389, 1362, 1215, 1010, 745 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₁H₁₇IN: 290.0400; found: 290.0398.

N-Phenyl-2-iodobenzylamine (5) 58)

n-BuNH₂の代わりに aniline を用い、2 と同様の方法で 5 (63%, white solid)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.86 (1H, dd, J = 7.8, 1.2 Hz), 7.38 (1H, d, J = 7.2 Hz), 7.31 (1H, t, J = 7.2 Hz), 7.20-7.16 (2H, m), 6.97 (1H, td, J = 8.0, 2.0 Hz), 6.73 (1H, t, J = 7.2 Hz), 6.61 (1H, dd, J = 8.8, 1.2 Hz), 4.32 (2H, s), 4.20 (1H, br-s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 141.0, 139.5, 129.3, 128.9, 128.8, 128.4, 117.8, 113.0, 98.5, 53.2 ppm.

N-(4-Methoxyphenyl)-2-iodobenzylamine (6) 59)

n-BuNH₂の代わりに 4-MeO-C₆H₄NH₂を用い、**2**と同様の方法で **6** (92%, white solid)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.85 (1H, d, *J* = 8.0 Hz), 7.38 (1H, d, *J* = 7.2 Hz), 7.30 (1H, t, *J* = 7.6 Hz), 6.97 (1H, t, *J* = 7.6 Hz), 6.77 (2H, d, *J* = 8.8 Hz), 6.58 (2H, d, *J* = 8.8 Hz), 4.28 (2H, s), 3.96 (1H, br-s), 3.74 (3H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 141.8, 141.2, 139.5, 128.9, 128.9, 128.4, 114.9, 114.3, 95.6, 55.8, 54.1 ppm.

N-Benzyl-2-iodobenzylamine (7)

n-BuNH₂の代わりに benzylamine を用い、**2**と同様の方法で**7**(92%, pale yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.82 (1H, dd, J= 7.8, 1.2 Hz), 7.40-7.34 (7H, m), 6.95 (1H, td, J = 7.2, 1.6 Hz), 3.84 (2H, s), 3.81 (2H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 140.1, 139.5 129.8, 128.8, 128.4, 128.2, 127.0, 115.5, 99.6, 57.6, 53.1 ppm; IR (ATR) 3059, 3024, 2913, 2824, 1585, 1562, 1493, 1450, 1435, 1196, 1011, 694 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₄H₁₅IN: 324.0244; found: 324.0242.

Synthetic method of 8-23

2-Iodo-3-methylbenzyl alcohol (8)

乳鉢に *p*-TsOH·H₂O (3.42 g, 18.0 mmol, 3.00 eq.)、3-methylanthranilic acid (0.907 g, 6.00 mmol)、H₂O (0.600 mL) を加え、3 分間乳棒を用い粉砕混和した後に、NaNO₂ (1.03 g, 15.0 mmol, 2.50 eq.)を加え、10 分間粉砕混和した。その後 KI (2.49 g, 15.0 mmol, 2.50 eq.)を加え、引き続き粉砕混和した。15 分後、10% Na₂SO₃ aq (68.0 mL) を加え Et₂O で抽出した後に、水層に 3 M HCl を加えて酸性とし、Et₂O で 2 回抽出した。それぞれの有機層を合わせ、Na₂SO₄ で乾燥し、減圧濃縮することで粗生成物 (2-iodo-3-methylbenzoic acid)を得た。

アルゴン雰囲気及び氷冷下、粗生成物 (2-iodo-3-methylbenzoic acid)、THF (44.0 mL)の混合液に NaBH₄ (0.910 g, 24.6 mmol, 4.01 eq.)を加えた後に、I₂ (1.52 g, 6.00 mmol, 1.00 eq.)と THF (22.0 mL)の混合液をゆっくり滴下した。18 時間後 1 M HCl (72.5 mL)を加え、Et₂O で 3 回抽出した。その後、有機層を飽和食塩水で洗い、Na₂SO₄ で乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 3/1) で精製して **8** (0.824 g, 3.32 mmol, 55% (2 step), white solid)を得た。

M.p. 72.5–72.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (2H, m), 7.18 (1H, t, J = 4.8 Hz), 4.72 (2H, d, J = 6.4 Hz), 2.48 (3H, s), 2.04 (1H, t, J = 6.4 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 143.2, 142.2, 129.0, 128.1, 125.7, 104.7, 70.3, 29.1 ppm; IR (ATR) 3264, 2893, 2843, 1574, 1443, 1373, 1312, 1169, 1060, 999, 760 cm⁻¹; HRMS (DART) [M–OH]⁺ calcd for C₈H₈I: 230.9665; found: 230.9668.

N-Butyl-2-iodo-3-methylbenzylamine (17)

2-Iodo-3-methylbenzyl alcohol (0.600 g, 2.42 mmol)、MnO₂ (6.33 g, 72.8 mmol, 30.1 eq.)、CH₂Cl₂ (6.80 mL) の混合液を加熱還流下 12 時間撹拌した。MnO₂ をセライト濾過で取り除き、減圧濃縮することで粗生成物(2-iodo-3-methylbenzaldehyde)を得た。

アルゴン雰囲気下および氷冷下において、粗生成物(2-iodo-3-methylbenzaldehyde)、 MeOH (16.0 mL)の混合液に、*n*-BuNH₂ (0.355 g, 4.84 mmol, 2.00 eq.)をゆっくり加 え、30 分間撹拌した後に室温下にし、撹拌を続行した。3 時間後再び氷冷下にし、NaBH₄ (0.197 g, 3.63 mmol, 1.50 eq)を 10 分間隔で 3 回分けて加えた。その後、室温下で 1 時間撹拌した後に、溶媒を 1/3 まで濃縮し、水(4.0 mL)と NaHCO₃ (0.202 g) を加え、 室温下 10 分間撹拌した。その後 CH₂Cl₂ で 3 回抽出し、合わせた有機層を K₂CO₃ で乾 燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 2/1)で 精製して **9** (0.675 g, 2.23 mmol, 92% (2 steps), colorless oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.21-7.12 (3H, m), 3.85 (2H, s), 2.63 (2H, t, J = 7.2 Hz), 2.48 (3H, s), 1.51 (2H, quint, J = 7.2 Hz), 1.37 (2H, sext, J = 7.2 Hz), 0.92 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 142.3, 128.4, 127.7, 126.9, 106.9, 59.4, 49.0, 32.2, 29.5, 20.5, 14.0 ppm; IR (ATR) 3048, 2955, 2924, 2859, 1574, 1450, 1377, 1123, 760 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₉IN: 304.0557; found: 304.0556.

MeO

2-Iodo-4-methoxybenzyl alcohol (9)

4-Methoxyanthranilic acid を基質とし、8と同様の方法で9(1.15 g, 4.36 mmol, 44% (2 steps), yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.76 (1H, d, J = 2.8 Hz), 7.33 (1H, d, J = 8.4 Hz), 6.90 (1H, dd, J = 2.4, 8.4 Hz), 4.64 (2H, d, J = 6.0 Hz), 3.79 (3H, s), 1.92 (1H, t, J = 6.0 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 134.9, 129.4, 124.6, 114.2, 98.1, 68.8, 55.5 ppm; IR (ATR) 3331, 2936, 2833, 1595, 1562, 1483, 1460, 1437, 1283, 1229, 1180, 1015 cm⁻¹; HRMS (DART) [M–OH]⁺ m/z calcd for C₈H₈IO 246.9614; found: 246.9612.

N-Butyl-2-iodo-4-methoxybenzylamine (18)

9を基質とし、**17**と同様の方法で**18**(0.548 g, 1.72 mmol, 57% (2 steps), yellow oil) を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.36 (1H, d, J = 2.4 Hz), 7.26-7.24 (1H, m), 6.89 (1H, dd, J = 8.6, 2.4 Hz), 3.78 (2H, s), 3.75 (3H, s), 2.61 (2H, t, J = 6.8 Hz), 1.53-1.44 (2H, m), 1.41-1.31 (2H, m), 0.92 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 134.5, 130.1, 124.6, 114.1, 99.5, 57.4, 55.5, 48.8, 32.2, 20.5, 14.0 ppm.; IR (ATR) 2953, 2926, 2870, 2859, 2831, 1595, 1560, 1485, 1437, 1281, 1229, 1115, 1036, 1018 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₂H₁₉INO: 320.0506; found: 320.0502.

2-Iodo-4-trifluoromethylbenzyl alcohol (**10**)

4-Trifluoromethylanthranilic acid を基質とし、8と同様の方法で10(0.892 g, 2.95 mmol, 59% (2 steps), yellow solid)を合成した。

Mp 78.6–78.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (1H, s), 7.66-7.59 (2H, m), 4.71 (2H, d, J = 4.8 Hz), 2.16 (1H, t, J = 5.6 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 146.6, 135.9, 131.2 (q, ² $J_{CF} = 32.3$ Hz), 128.0, 125.4, 123.0 (q, ¹ $J_{CF} = 274$ Hz), 96.2, 68.9 ppm; IR (ATR) 3256, 2909, 2853, 2183, 2021, 1508, 1393, 1315, 1265, 1171, 1144, 1111, 1065, 1024 cm⁻¹; HRMS (DART) [M–OH]⁺ m/z calcd for C₈H₅F₃I 284.9383; found: 284.9385.

N-Butyl-2-iodo-4-trifluoromethylbenzylamine (19)

10を基質とし、**17**と同様の方法で**19**(0.267 g, 0.746 mmol, 78% (2 steps), yellow oil)を合成した。

¹H NMR (495 MHz, CDCl₃) δ 8.05 (1H, s), 7.58 (1H, d, J= 7.4 Hz), 7.52 (1H, d, J= 7.9 Hz), 3.84 (2H, s), 2.64 (2H, t, J= 7.4 Hz), 1.52-1.37 (4H, m), 0.93 (3H, t, J= 7.4 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 136.0, 130.7 (q, ² J_{CF} = 32.9 Hz), 130.0, 125.0, 122.9 (q, ¹ J_{CF} = 272 Hz), 98.8, 58.0, 49.0, 32.2, 20.4, 13.9 ppm; IR (ATR) 2959, 2928, 2860, 2818, 1607, 1456, 1393, 1315, 1269, 1167, 1121, 1076, 1030 cm⁻¹; HRMS

(ESI) $[M+H]^+ m/z$ calcd for $C_{12}H_{16}F_3IN$: 358.0274; found: 358.0270.

2-Iodo-4-nitrobenzyl alcohol (11)

4-Nitro-anthranilic acid を基質とし、8 と同様の方法で**11** (3.11 g, 11.1 mmol, 44% (2 steps), orange solid)を合成した。

Mp 96.4–97.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (1H, d, J=2.4 Hz), 8.26 (1H, d, J= 2.4, 8.8 Hz), 7.71 (1H, d, J= 8.8 Hz), 4.75 (2H, d, J= 5.6 Hz), 2.12 (1H, t, J= 5.6 Hz) ppm.; ¹³C NMR (125 MHz, CDCl₃) δ 149.8, 147.4, 133.9, 127.8, 123.4, 95.2, 68.7 ppm.; HRMS (DART) [M+H]+ m/z calcd for C₇H₇IO₃: 279.9465; found: 279.9457.; IR (ATR) 3499, 3092, 2868, 1584, 1510, 1443, 1339, 1269, 1196, 1113, 1067, 1026 cm⁻¹.

N-Butyl-2-iodo-4-nitrobenzylamine (20)

11を基質とし、**17**と同様の方法で**20**(1.01 g, 3.01 mmol, 83% (2 steps), yellow oil) を合成した。

¹H NMR (400 MHz, CDCl₃) δ 8.66 (1H, d, J = 2.4 Hz), 8.20 (1H, dd, J = 8.4, 2.4 Hz), 7.62 (1H, d, J = 8.4 Hz), 3.86 (2H, s), 2.65 (2H, t, J = 7.2 Hz), 1.56-1.49 (2H, m), 1.43-1.36 (2H, m), 0.93 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 146.9, 134.0, 129.2, 123.2, 98.1, 58.0, 49.2, 32.3, 20.4, 14.0 ppm; HRMS (ESI) [M+H]⁺ *m/z* calcd for C₁₁H₁₆IN₂O₂: 335.0251; found: 335.0251; IR (ATR) 3092, 2955, 2926, 2868, 1516, 1456, 1341, 1111, 1028 cm⁻¹.

2-Iodo-5-methoxybenzyl alcohol (**12**)

5-Methoxyanthranilic acid を基質とし、**8**と同様の方法で**12**(0.849 g, 3.22 mmol (2 steps), 54%, white solid)を合成した。

M.p. 65.6–66.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (1H, d, *J* = 9.0 Hz), 7.07 (1H, d, *J* = 3.0 Hz), 6.51 (1H, dd, *J* = 8.5, 3.0 Hz), 4.64 (2H, d, *J* = 6.5 Hz), 3.81 (3H, s), 1.96 (1H, t, *J* = 6.5 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 160.3, 143.7, 139.6, 115.3, 114.3, 85.3, 69.2, 55.4 ppm; IR (ATR) 3256, 3001, 2932, 2935, 1570, 1466, 1292,

1231, 1162, 1053, 1003, 752 cm⁻¹; HRMS (DART) $[M-OH]^+$ calcd for C₈H₈IO: 246.9614; found: 246.9616.

N-Butyl-2-iodo-5-methoxybenzylamine (21)

12を基質とし、**17**と同様の方法で**21** (0.647 g, 2.03 mmol, 67% (2 steps), yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.67 (1H, d, J = 8.8 Hz), 6.98 (1H, d, J = 3.2 Hz), 6.56 (1H, dd, J = 8.6, 2.8 Hz), 3.79 (2H, s), 3.75 (3H, s), 2.63 (2H, t, J = 7.2 Hz), 1.55-1.48 (2H, m), 1.37 (2H, sext, J = 7.6 Hz), 0.92 (3H, t, J = 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 143.5, 139.7, 115.6, 114.7, 87.8, 58.3, 55.4, 49.0, 32.3, 20.5, 14.0 ppm; IR (ATR) 3092, 2955, 2926, 2868, 1516, 1456, 1341, 1111, 1028 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₉INO: 320.0506; found: 320.0501.

4-Chloro-2-iodobenzyl alcohol (13)

4-Chloroanthranilic acid を基質とし、8と同様の方法で**13**(0.786 g, 2.93 mmol(2 steps), 33%, white solid)を合成した。

Mp 116.2–116.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (1H, d, J = 8.4 Hz), 7.49 (1H, d, J = 2.4 Hz), 7.00 (1H, dd, J = 8.4, 2.4 Hz), 4.64 (2H, d, J = 6.4 Hz), 2.00 (1H, t, J = 6.4 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 140.1, 135.1, 129.3, 128.4, 93.8, 68.9 ppm; IR (ATR) 3294, 3221, 3080, 2911, 2857, 1879, 1493, 1472, 1452, 1437, 1393, 1373, 1358, 1252, 1194, 1101, 1055, 1007 cm⁻¹; HRMS (DART) [M–OH]⁺ m/z calcd for C₇H₅ClI 250.9119; found: 250.9120.

N-Butyl-4-chloro-2-iodobenzylamine (22)

13 を基質とし、**17** と同様の方法で**22** (0.302 g, 0.934 mmol, 93% (2 steps), colorless oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.79 (1H, d, J = 8.4 Hz), 7.40 (1H, d, J = 3.2 Hz), 6.95 (1H, dd, J = 8.4, 3.2 Hz), 3.76 (2H, s), 2.63 (2H, t, J = 7.2 Hz), 1.55-1.48 (2H, m), 1.42-1.33 (2H, m), 0.93 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃)

δ 144.4, 140.2, 134.7, 129.5, 128.7, 96.2, 58.0, 49.0, 32.3, 20.4, 14.0 ppm; IR (ATR) 2954, 2924, 2870, 2859, 2816, 1576, 1553, 1452, 1379, 1190, 1121, 1096, 1009 cm⁻¹; HRMS (ESI) [M+H]⁺ *m/z* calcd for C₁₁H₁₆ClIN: 324.0010; found: 324.0012.

2-Iodo-6-methylbenzyl alcohol (14)

6-methylanthranilic acid を基質とし、8と同様の方法で14 (0.821 g, 3.31 mmol, 55% (2 steps), yellow solid)を合成した。

M.p. 101.4–101.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (2H, m), 7.18 (1H, t, J = 4.8 Hz), 4.72 (2H, d, J = 6.4 Hz), 2.48 (3H, s), 2.04 (1H, t, J = 6.4 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 142.2, 129.0, 128.1, 125.7, 104.7, 70.3, 29.1 ppm; IR (ATR) 3264, 2893, 1574, 1443, 1373, 1312, 1169, 1057, 999, 760 cm⁻¹; HRMS (DART) [M–OH]⁺ calcd for C₈H₈I: 230.9665; found: 230.9668.

N-Butyl-2-iodo-6-methylbenzylamine (23)

14を基質とし、**17**と同様の方法で**23** (0.437 g, 1.44 mmol, 60% (2 steps), yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.66 (1H, d, J = 7.67 Hz),7.12 (1H, d, J = 7.2 Hz), 6.82 (1H, t, J = 7.6 Hz), 3.86 (2H, s), 2.68 (2H, t, J = 7.2 Hz), 2.46 (3H, s), 1.55-1.48 (2H, m), 1.38 (2H, sext, J = 7.2 Hz), 0.92 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 138.6, 137.5, 130.7, 128.8, 101.9, 55.5, 49.6, 32.2, 20.7, 20.5, 14.0 ppm; IR (ATR) 2954, 2924, 2870, 1557, 1447, 1113, 1082, 764 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₉IN: 304.0557; found: 304.0556.

Synthetic method of 24, 25

Methyl 4-(hydroxymethyl)-3-iodobenzoate (24)

アルゴン雰囲気下、2-aminoterephthalic acid (1.09 g, 6.00 mmol)、TMSCl (0.978 g, 9.00 mmol, 1.50 equiv)を MeOH 中で加熱還流を行った。12 時間後、減圧濃縮した後 に飽和 K₂CO₃水溶液(21 mL)を加え、EtOAc で 3 回抽出した。水層に酢酸を加え、酸 性とした後に、EtOAc で 3 回抽出した。合わせた有機層を MgSO₄で乾燥し、減圧濃 縮することで粗生成物(2-amino-4-(methoxylcarbonyl)benzoic acid)を得た。

粗生成物(2-amino-4-(methoxylcarbonyl)benzoic acid)を基質とし、9と同様の方法 で24 (47% (3 steps), white solid)を合成した。

M.p. 74.8–75.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (1H, s), 8.04 (1H, d, J = 8.4 Hz), 7.56 (1H, d, J = 8.4 Hz), 4.71 (2H, d, J = 6.0 Hz), 3.95 (3H, s), 2.23 (1H, br-s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 147.5, 140.1, 130.8, 129.5, 127.6, 95.1, 69.0, 52.4 ppm; IR (ATR) 3468, 3418, 2955, 1697, 1555, 1439, 1385, 1288, 1238, 1119, 1061, 1026, 964, 756 cm⁻¹; HRMS (DART) [M+H]⁺ calcd for C₉H₁₀IO₃: 292.9669; found: 292.9667.

Methyl 4-((butylamino)methyl)-3-iodobenzoate (25)

Methyl 4-(hydroxymethyl)-3-iodobenzoate を基質とし、**17**と同様の方法で**25** (90% (2 steps), yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 8.48 (1H, s), 7.98 (1H, d, J= 8.0 Hz), 7.46 (1H, d, J= 8.0 Hz), 3.91 (3H, s), 3.83 (2H, s), 2.63 (2H, t, J= 7.2 Hz), 1.55-1.49 (2H, m), 1.37 (2H, sext, J= 7.2 Hz), 0.92 (3H, t, J= 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 147.6, 140.4, 130.3, 129.3, 129.0, 98.8, 58.2, 52.3, 49.1, 32.2, 20.4, 14.0 ppm.; IR (ATR) 2951, 2928, 2870, 2859, 1721, 1431, 1281, 1254, 1111, 1030, 756 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₃H₁₉INO₂: 348.0455; found: 348.0455.

Synthetic method of 26–29

2-Nitrophenethyl alcohol (26) 60)

2-Nitrotoluene (1.37 g, 10.0 mmol)、35% HCHO aq (2.57 mL, 30.0 mmol, 3.00 eq.)、 DMSO (25.0 mL)の混合溶液に、氷冷下 14.2 M KOH aq (1.76 mL, 25.0 mmol, 2.50 eq.)を滴下し、室温下撹拌した。1 時間後 sat. NH₄Cl を加え中性にした後に、Et₂O と 水で分液し、水層を再び Et₂O で洗った。有機層を飽和食塩水で洗った後に Na₂SO₄ で乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 1/1) で精製して 26 (0.627 g, 3.75 mmol, 37%, brown oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.94 (1H, dd, J = 8.0, 1.2 Hz), 7.58-7.54 (1H,m), 7.44-7.38 (2H, m), 3.96 (2H, q, J = 6.4 Hz), 3.18 (2H, t, J = 6.4 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 133.7, 132.9, 132.7, 127.6, 124.8, 62.7, 36.1 ppm

2-Iodophenethyl alcohol (27) 61)

常圧の水素雰囲気下、2-nitrophenethyl alcohol (0.627 g, 3.75 mmol)、Pd/C (0.146 g)、MeOH (13.0 mL)の混合溶液を 20.5 時間室温にて撹拌した。セライトろ過により Pd/C を除去し、ショートカラム (ethyl acetate)を行い粗生成物(2-aminophenethyl alcohol)を得た。

乳鉢に *p*-TsOH·H₂O (1.98 g, 10.4 mmol, 3.00 eq.)、粗生成物(2-aminophenethyl alcohol)、H₂O (0.35 mL)を加え、3 分間乳棒を用い粉砕混和した後に、NaNO₂ (0.599 g, 8.68 mmol, 2.50 eq.)を加え、10 分間粉砕混和した。その後 KI (1.44 g, 8.68 mmol, 2.50 eq.)を加え、引き続き粉砕混和した。15 分後、10% Na₂SO₃ aq (26.0 mL)を加え Et₂O と水で分液し、有機層を水で 2 回洗った後に、Na₂SO₄ で乾燥し、減圧濃縮した。 シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 3/1 to 2/1)で精製して **27** (0.555 g, 2.24 mmol, 60% (2 step), yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.84 (1H, d, J = 8.0 Hz), 7.32-7.26 (2H, m), 6.95-6.91 (1H, m), 3.90-3.85 (2H, m), 3.03 (2H, t, J = 6.8 Hz), 1.37 (1H, t, J = 6.0 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 139.7, 130.3, 128.4, 128.3, 100.8, 62.3, 43.7 ppm; IR (ATR) 3053, 2953, 2926, 2870, 2814, 1464, 1435, 1406, 1375, 1125, 1009 cm⁻¹; HRMS (DART) [M–OH]⁺ m/z calcd for C₈H₈I: 230.9665; found: 230.9671.

2-Iodophenethyl 4-methylbenzenesulfonate (28)

TsCl (0.376 g, 1.97 mmol, 1.10 eq.)、DMAP (21.9 mg, 0.179 mmol, 0.100 eq.)、Et₃N (0.362 g, 3.58 mmol, 2.00 eq.)、CH₂Cl₂ (3.70 mL)の混合溶液に 2-iodophenethyl alcohol (0.444 g, 1.79 mmol)とCH₂Cl₂ (3.70 mL)の混合溶液を少しずつ滴下した。14.5 時間後、sat. NaHCO₃を加え、水とCH₂Cl₂ で分液した後に水層をCH₂Cl₂ で洗い、Na₂SO₄ で乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー (hexane/EtOAc = 6/1)で精製して**28** (0.709 g, 1.76 mmol, 99%, colorless oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.74 (1H, d, J = 7.6 Hz), 7.69 (2H, d, J = 8.0 Hz), 7.28-7.24 (3H, m), 7.19 (1H, d, J = 7.6 Hz), 6.93-6.89 (1H, m), 4.21 (2H, t, J = 6.8

Hz), 3.08 (2H, t, J = 7.2 Hz), 2.43 (3H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 139.6, 138.8, 132.8, 130.6, 129.8, 128.8, 128.5, 127.9, 100.2, 68.8, 40.0, 21.6 ppm; IR (ATR) 3061, 2955, 1919, 1597, 1466, 1356, 1173, 1096, 1009 cm⁻¹; HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₅H₁₅INaO₃S₁: 424.9679; found: 424.9676.

N-Butyl-2-iodo-phenethylamine (29)

2-Iodophenethyl 4-methylbenzenesulfonate (0.322 g, 0.800 mmol)、*n*-BuNH₂ (0.293 g, 4.00 mmol, 5.00 eq.)、THF (6.5 mL)の混合溶液を加熱還流下、撹拌した。 24.5 時間後、室温まで冷やし、EtOAc と水で分液し、水層を 2 回 EtOAc で洗った。3 M HCl を用いて有機層を酸性にし、EtOAc と水で分液した後に sat. NaHCO₃で中和 し、再び EtOAc と水で分液した。その後 K₂CO₃で乾燥し、減圧濃縮した。ショート カラム(chloroform/methanol = 10/1)を行ったが、固体状の不純物が確認できた。これ を遊離したトシル酸塩であると推定し、10% KOH aq を用い完全に塩基性にした後に、 水と CH₂Cl₂ で分液し、Na₂SO₄ で乾燥し、減圧濃縮することで **29** (98.0 mg, 0.323 mmol, 40%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.82 (1H, d, J = 7.6 Hz), 7.30-7.22 (2H, m), 6.89 (1H, td, J = 8.0, 2.0 Hz), 2.95-2.90 (2H, m), 2.87-2.83 (2H, m), 2.66 (2H, t, J = 7.2 Hz), 1.52-1.45 (2H, m), 1.39-1.30 (2H, m), 0.92 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 139.6, 129.8, 128.3, 128.0, 100.7, 49.8, 49.6, 41.3, 32.3, 20.5, 14.0 ppm; IR (ATR) 2953, 2926, 2870, 2857, 2814, 1585, 1560, 1464, 1435, 1362, 1288, 1125, 1009 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₂H₁₉IN: 304.0557; found: 304.0556.

Synthetic method of 30-34

(1*H*-Indol-2-yl)methanol (30) 62)

氷冷下、LiAlH₄ (0.380 g, 10.0 mmol, 2.00 eq.)を THF (10.0 mL)に懸濁させ、
1*H*-indole-2-carboxylic acid (0.806 g, 5.00 mmol)の THF (9.50 mL)溶液を滴下した。
室温下で 6 時間撹拌後、H₂O (0.400 mL)、15% NaOH 水溶液 (0.400 mL)、H₂O (1.20 mL)の順で加え、室温下撹拌した。20 分後、不溶物をセライト濾過によって除去し、
減圧濃縮した。シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 1/1)で精製して **30** (0.682 g, 4.63 mmol, 93%, pale red solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 8.33 (1H, br-s), 7.58 (1H, d, *J* = 8.0 Hz), 7.19 (1H, td, *J* = 6.8, 0.8 Hz) 7.10 (1H, td, *J* = 7.6, 0.8 Hz), 6.41 (1H, d, *J* = 1.2 Hz), 4.84 (2H, d, *J* = 5.2 Hz) 1.75 (1H, d, *J* = 5.2 Hz) ppm.

1H-Indole-2-carbaldehyde (**31**) ⁶³⁾

30を基質とし、**1**と同様の方法で**31** (0.446 g, 3.07 mmol, 88%, brown solid)を合成した。

¹H NMR (400 MHz, CDCl₃) & 9.86 (1H, s), 9.31 (1H, br-s), 7.75 (1H, d, *J* = 8.4 Hz), 7.47 (1H, d, *J* = 8.0 Hz), 7.40 (1H, td, *J* = 8.4, 1.2 Hz), 7.29 (1H, d, *J* = 1.6 Hz), 7.18 (1H, td, *J* = 8.4, 0.8 Hz), 2.42 (3H, s) ppm.

3-Iodo-1*H*-indole-2-carbaldehyde (32) ⁶⁴⁾

アルゴン雰囲気下、**31** (0.363 g, 2.5 mmol)、KOH (0.202 g, 9.00 mmol, 3.60 eq.)、 I₂ (0.635 g, 2.50 mmol, 1.00 eq.)を DMF (40.0 mL)中において室温で撹拌した。4.5 時 間後、反応溶液を 0.13 M NaHSO₃水溶液 (20.0 mL)、28% NH₃ aq. (20.0 mL) の混 合溶液に加え、EtOAc で抽出した。有機層を飽和食塩水で洗い、Na₂SO₄ で乾燥し、 減圧濃縮した。シリカゲルカラムクロマトグラフィー(EtOAc)で精製して **32** (0.557 g, 2.06 mmol, 82%, brown solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 9.84 (1H, s) 9.31 (1H, br-s), 7.61 (1H, d, J = 8.4 Hz), 7.47–7.41 (2H, m), 7.28–7.24 (1H, m) ppm.

N-((3-Iodo-1*H*-indol-2-yl)methyl)butan-1-amine (**33**)

32を基質とし、**2**と同様の方法で**33**(0.201 g, 0.613 mmol, 51%, brown oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 9.04 (1H, br-s), 7.40 (1H, d, J = 7.2 Hz), 7.31 (1H, d, J = 7.6 Hz), 7.22–7.14 (2H, m), 4.00 (2H, s), 2.66 (2H, t, J = 7.2 Hz), 1.52 (2H, quin, J = 7.2 Hz), 1.20 (2H, quin, J = 7.6 Hz), 0.92 (3H, t, J = 7.6 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 136.8, 135.8, 130.4, 123.0, 120.59, 120.56, 111.3, 58.6, 48.9, 46.5, 31.6, 20.3, 13.9 ppm; IR (ATR) 2955, 2926, 2870, 2857, 1597, 1447, 1366, 1171, 1088, 1059, 1022, 810, 743, cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₃H₁₈IN₂: 329.0509; found: 329.0504.

N-((3-Iodo-1-tosyl-1*H*-indol-2-yl)methyl)butan-1-amine (**34**)

氷冷下、32 (2.71 g, 10 mmol)の DMF (84.7 mL)溶液に NaH (0.672 g, 14.0 mmol, 1.40 eq.)を少しずつ加えた後に、室温下で撹拌した。1 時間後、TsCl (2.97 g, 15.6 mmol, 1.56 eq.)を氷冷下で加えた後に、室温下で撹拌した。3 時間後、飽和 Na₂S₂O₃水溶液を加え、CH₂Cl₂で 3 回抽出した後に、Na₂SO₄で乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー (hexane/EtOAc = 6/1)で精製して粗生成物 (3-iodo-1-tosyl-1*H*-indole-2-carbaldehyde)を得た。

粗生成物(3-iodo-1-tosyl-1*H*-indole-2-carbaldehyde)を基質とし、2 と同様の方法で 34 (0.483 mg, 1.00 mmol, 10% (2steps), brown oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 8.13 (1H, d, J = 9.6 Hz), 7.72 (2H, d, J = 8.4 Hz), 7.39–7.31 (3H, m), 7.19 (2H, d, J = 8.0 Hz), 4.27 (2H, s), 2.59 (2H, t, J = 6.8 Hz), 2.34 (3H, s), 1.50–1.43 (2H, m), 1.38–1.28 (2H, m), 0.89 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 139.0, 136.7, 135.4, 131.5, 129.9, 126.8, 126.0, 124.3, 122.2, 115.0, 76.2, 47.8, 46.8, 32.3, 21.6, 20.4, 14.0 ppm; IR (ATR) 3051, 2920, 1676, 1593, 1503, 1437, 1371, 1175, 1148, 1057, 901, 672 cm⁻¹; HRMS (ESI) [M+H]⁺ m/zcalcd for C₂₀H₂₄IN₂O₂S: 483.0598; found: 483.0599.

Synthetic method of 35, 36

СНО

2-Iodoquinoline-3-carbaldehyde (35) 41)

2-Chloroquinoline-3-carbaldehyde (0.479 g, 2.50 mmol)、NaI (2.62 g, 17.5 mmol, 7.00 eq.)、MeCN (9.00 mL)の混合溶液に濃塩酸 (70.0 μL)を加え、加熱還流下で撹 拌した。17 時間後、飽和 Na₂CO₃水溶液で塩基性とした後に、飽和 Na₂S₂O₄水溶液を 加え、EtOAc で抽出した。有機層を飽和食塩水で洗い、Na₂SO₄ で乾燥し、減圧濃縮 した。シリカゲルカラムクロマトグラフィー(CH₂Cl₂)で精製して **35** (0.631 g, 2.23 mmol, 89%, pale brown solid)を得た。 ¹H NMR (400 MHz, CDCl₃) δ 10.30 (1H, s), 8.58 (1H, s), 8.12 (1H, d, *J* = 8.4 Hz), 7.98 (1H, d, *J* = 8.0 Hz), 7.88 (1H, dt, *J* = 8.8, 1.6 Hz), 7.67 (1H, t, *J* = 8.4 Hz), 2.42 (3H, s) ppm.

N-((2-Iodoquinolin-3-yl)methyl)butan-1-amine (36)

アルゴン雰囲気下 2-iodoquinoline-3-carbaldehyde (1.42 g, 5.00 mmol)、MeOH (33 mL)の混合液に、氷冷下 *n*-BuNH₂ (0.731 g, 10.0 mmol, 2.00 eq.)をゆっくり加え、30 分間撹拌した後に室温下にし、撹拌を続行した。3 時間後再び氷冷下にし、NaBH₄ (0.284 g, 7.509 mmol, 1.50 eq)を 10 分間隔で 3 回に分けて加えた。その後室温下で 1 時間撹拌した後に、溶媒を 1/3 まで濃縮し、水(8.2 mL)と NaHCO₃ (0.418 g) を加え、 室温下 10 分間撹拌した。その後水とジクロロメタンで分液し、水層を 2 回ジクロロメ タンで洗い、K₂CO₃で乾燥し、減圧濃縮した。ショートカラム(hexane/EtOAc = 1/1) で精製して **36** (1.22 g, 3.59 mmol, 72%, orange solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 8.05-8.02 (2H, m), 7.80 (1H, d, J = 8.4 Hz), 7.68 (1H, t, J = 7.2 Hz), 7.56 (1H, t, J = 6.8 Hz), 3.92 (2H, s), 2.71 (2H, t, J = 7.2 Hz), 1.60-1.55 (2H,m), 1.44-1.38 (2H, m), 0.94 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 136.1, 135.0, 130.0, 128.4, 127.5, 127.3, 127.2, 125.1, 56.5, 49.1, 32.2, 20.5, 14.0 ppm; IR (ATR) 2949, 2924, 2855, 2803, 1655, 1584, 1452, 1308, 1125, 995, 754 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₄H₁₈IN₂: 341.0509; found: 341.0507.

Synthetic method of 37, 38

3-Iodo-4-methylpyridine (37)

3-Amino-4-methylpyridine (1.62 g, 15.0 mmol)、*p*-TsOH・H₂O (8.60 mg, 45.0 mmol, 3.00 eq.)の MeCN(60.0 mL)溶液に、H₂O (12.0 mL)に NaNO₂ (2.07 g, 30.0 mmol, 2.00 eq.)、KI (4.98 g, 30.0 mmol, 2.00 equiv)を溶かした溶液を少しずつ滴下し、室温下で 撹拌した。1時間後、飽和 NaHCO₃水溶液(30.0 mL)と飽和 NaHSO₃水溶液(30.0 mL) を加え、EtOAc で 2 回抽出した。合わせた有機層を飽和食塩水で洗った後に、Na₂SO₄ で乾燥後、減圧濃縮した。シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 2/1) で精製して **37** (2.20 g, 10.0 mmol, 67%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 8.91 (1H, s), 8.38 (1H, d, J= 5.2 Hz), 7.19 (1H, d, J= 4.4 Hz), 2.42 (3H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 150.0, 148.4, 125.0, 100.5, 27.0 ppm; IR (ATR) 3044, 2982, 1580, 1470, 1439, 1395, 1377, 1082, 1030, 822, 712, 687 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₆H₇IN: 219.9618; found: 219.9617.

N-((3-Iodopyridin-4-yl)methyl)butan-1-amine (38)

36 (2.10 g, 9.58 mmol)、*tert*-butyl iodide (0.528 g, 2.87 mmol, 0.300 eq.)、TFA (1.31 g, 11.5 mmol, 1.20 eq.)、FeCl₂ (72.2 mg, 0.570 mmol, 6.00 mol%)、I₂ (2.92 g, 11.5 mmol, 1.20 eq.)を DMSO (43.0 mL) 中において 90 °C で加熱撹拌した。10 時間 後、K₂CO₃水溶液(10%, 60.0 mL)、Na₂S₂O₃水溶液(10%, 60.0 mL)を加え、EtOAc で 3 回抽出した。合わせた有機層を Na₂SO₄ で乾燥し、減圧濃縮し、粗生成物 (3-iodoisonicotinaldehyde)を得た。

粗生成物(3-iodoisonicotinaldehyde)を基質とし、2 と同様の方法で **38** (1.56 g, 5.36 mmol, 56% (2 steps), yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 8.86 (1H, s), 8.47 (1H, d, *J* = 4.8 Hz), 7.39 (1H, d, *J* =
4.8 Hz), 3.77 (2H, s), 2.64 (2H, t, J = 7.2 Hz), 1.55-1.48 (2H, m), 1.38 (2H, sext, J = 7.2 Hz), 0.93 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) & 157.0, 151.4, 148.8, 124.1, 98.4, 57.1, 49.0, 32.1, 20.3, 13.9 ppm; IR (ATR) 2955, 2924, 2870, 2859, 2814, 1576, 1464, 1395, 1354, 1209, 1119, 1074, 1005, 831, 687 cm⁻¹; HRMS (ESI) [M+H]+ m/z calcd for C₁₀H₁₆IN₂: 291.0353; found: 291.0344.

Synthetic method of **39–41**

Methyl 3-iodothiophene-2-carboxylate (39) 44)

氷冷下、methyl 3-aminothiophene-2-carboxylate (2.36 g, 15.0 mmol)、6 M HCl 水溶液 (6.00 mL)に、MeOH (33 mL)の混合液に、NaNO₂(1.26 g, 15.0 mmol, 1.00 eq.) を H₂O (2.40 mL)に溶解させた溶液を加えた後に、室温下撹拌した。1 時間後、反応 溶液を KI (2.49 g, 15.0 mmol, 1.00 eq.)と濃塩酸 (0.630 mL)の混合溶液に加え、60 ℃ で加熱撹拌した。1 時間後、飽和 Na₂S₂O₄ 水溶液を加え、Et₂O で 3 回抽出した。合わ せた有機層を飽和食塩水で洗い、Na₂SO₄ で乾燥後、減圧濃縮した。シリカゲルカラム クロマトグラフィー(hexane/EtOAc = 6/1)で精製して **39** (1.72 g, 10.0 mmol, 6.42 mmol, 43%, yellow solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.44 (1H, d, J = 5.2 Hz), 7.23 (1H, d, J = 5.2 Hz), 3.91 (3H, s) ppm.

(3-Iodothiophen-2-yl)methanol (40)

39(1.34 g, 5.00 mmol)、2 M NaOH 水溶液(5.00 mL, 2.00 eq.)、MeOH(13.5 mL)の混合溶液を室温下撹拌した。14 時間後、3 M HCl 水溶液を加え、酸性とした後に、減圧濃縮によって MeOH を除去した。EtOAc で3回抽出し、飽和食塩水で洗い、Na₂SO₄で乾燥後、減圧濃縮することで、粗生成物(3-iodothiophene-2-carboxylic acid)を得た。

粗生成物(3-iodothiophene-2-carboxylic acid)を基質とし、8 と同様の方法で 40 (0.922 g, 3.84 mmol, 77% (2 steps), brown solid)を合成した。

M.p. 48.8–49.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (1H, d, *J* = 4.8 Hz), 7.05 (1H, d, *J* = 4.8 Hz), 4.79 (2H, d, *J* = 6.4 Hz), 1.91 (1H, t, *J* = 6.4 Hz) ppm, ¹³C NMR (125 MHz, CDCl₃) δ 142.1, 135.1, 126.9, 79.1, 61.8 ppm; IR (ATR) 3267, 3183, 3098, 2920, 2851, 2639, 1755, 1435, 1354, 1327, 1223, 1146, 1022, 980, 856, 698 cm⁻¹; HRMS (DART) [M–OH]⁺ *m/z* calcd for C₉H₁₅INS: 222.9073; found: 222.9071.

N-((3-Iodothiophen-2-yl)methyl)butan-1-amine (41)

40を基質とし、**9**と同様の方法で**41** (0.669 g, 2.27 mmol, 91% (2 steps), pale yellow oil)を合成した。

¹H NMR (400 MHz, CDCl₃) δ 7.21 (1H, d, J = 5.6 Hz), 7.01 (1H, d, J = 5.6 Hz), 3.92 (2H, s), 2.67 (2H, t, J = 7.6 Hz), 1.54-1.47 (2H, m), 1.36 (2H, sext, J = 7.2 Hz), 0.92 (3H, t, J = 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 134.6, 125.6, 78.6, 50.2, 48.9, 32.1, 20.4, 14.0 ppm; IR (ATR) 2955, 2924, 2866, 2816, 1454, 1331, 1115, 856, 698 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₉H₁₅INS: 295.9964; found: 295.9966.

スルホンアミド及びスルフィンアミド合成

General procedure A

封管に K₂S₂O₅ (88.9 mg, 0.400 mmol, 2.00 eq.)、Pd(OAc)₂ (4.50 mg, 0.0200 mmol, 10.0 mol%)、P(*t*-Bu)₃·HBF₄ (11.6 mg, 0.0400 mmol, 20.0 mol%)、DMSO (1.20 mL)、 基質 (0.200 mmol)、(*n*-Bu)₃N (37.1 mg, 0.200 mmol, 1.00 eq.)の順に加え、アルゴン 雰囲気下 100 ℃で加熱撹拌した。18 時間後、加熱撹拌を終了した。その後、酢酸エチ ルに溶かし、有機層を水で 3 回洗った後、飽和食塩水で洗い、Na₂SO₄ で乾燥し、減圧 濃縮した。残渣をシリカゲル分取薄層クロマトグラフィーで精製した。

General procedure B

封管に K₂S₂O₅ (66.7 mg, 0.300 mmol, 1.50 eq.)、Pd(OAc)₂ (4.50 mg, 0.0200 mmol, 10.0 mol%)、PCy₃ (11.2 mg, 0.0400 mmol, 20.0 mol%)、DMSO (1.20 mL)、基質 (0.200 mmol)、(*n*-Bu)₃N (74.2 mg, 0.400 mmol, 2.00 eq.)の順に加え、アルゴン雰囲気下 100 ℃で加熱撹拌した。18 時間後、加熱撹拌を終了した。その後、酢酸エチルに溶か し、有機層を水で 3 回洗った後、飽和食塩水で洗い、Na₂SO₄ で乾燥し、減圧濃縮した。 残渣をシリカゲル分取薄層クロマトグラフィーで精製した。

2-Butyl-2,3-dihydro-1,1-dioxo-1,2-benzisothiazole (3)

General procedure Aに基づき、基質として2を用いて3(26.5 mg, 0.118 mmol, 59%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.81 (1H, d, J = 7.6 Hz), 7.61-7.50 (2H, m), 7.39 (1H, d, J = 8.0 Hz), 4.36 (2H, s), 3.29 (2H, t, J = 7.2 Hz), 1.77-1.70 (2H,m), 1.51-1.42 (2H, m), 0.98 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 135.4, 133.8, 132.7, 129.2, 124.5, 121.5, 50.6, 44.0, 30.0, 20.1, 13.7 ppm; IR (ATR) 2959, 2934, 2870, 1732, 1458, 1294, 1177 cm⁻¹; HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₁H₁₅NNaO₂S: 248.0716; found: 248.0716.

2-Butyl-2,3-dihydro-1-oxo-1,2-benzisothiazole (4)

General procedure Bに基づき、基質として2を用いて4(31.4 mg, 0.150 mmol, 75%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.76 (1H, d, *J* = 7.6 Hz), 7.51-7.43 (3H, m), 4.81 (1H, d, *J* = 14.4 Hz), 4.43 (1H, d, *J* = 14.4 Hz), 3.56-3.49 (1H, m), 3.34-3.27 (1H, m),

1.81-1.74 (2H, m), 1.51-1.39 (2H, m), 0.97 (3H, t, J = 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 139.7, 130.9, 128.4, 124.1, 123.3, 56.6, 47.5, 30.7, 20.1, 13.7 ppm; IR (ATR) 3458, 2955, 2930, 2860, 1454, 1072 cm⁻¹; HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₁H₁₅NNaOS: 232.0767; found: 232.0767.

2-Isopropyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (42)

General procedure A に基づき、基質として 5 を用いて 42(20.5 mg, 0.0970 mmol, 48%, pale brown solid)を得た。

Mp 107.7–108.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (1H, d, J = 8.0 Hz), 7.59 (1H, d, J = 6.8 Hz), 7.52 (1H, d, J = 7.6 Hz), 7.41 (1H, d, J = 7.6 Hz), 4.36 (2H, s), 4.11 (1H, sept, J = 6.8 Hz), 1.39 (6H, d, J = 6.4 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 135.6, 133.7, 132.5, 129.1, 124.5, 121.3, 45.2, 44.8, 21.0 ppm; IR (ATR) 2976, 2928, 2160, 2029, 1721, 1664, 1458, 1395, 1269, 1202, 1123, 1065 cm⁻¹.; HRMS (DART) [M+H]⁺ m/z calcd for C₁₀H₁₄NO₂S: 212.0740; found: 212.0745.

2-Isopropyl-2,3-dihydrobenzo[d]isothiazole 1-oxide (61)

General procedure B に基づき、基質として **5** を用いて **61** (18.0 mg, 0.0922 mmol, 46%, yellow solid)を得た。

Mp 58.9–60.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (1H, d, J = 7.2 Hz), 7.50-7.42 (3H, m), 4.88 (1H, d, J = 14.4 Hz), 4.41 (1H, d, J = 14.4 Hz), 3.93 (1H, sept, J = 7.2 Hz), 1.46 (3H, d, J = 7.6 Hz), 1.44 (3H, d, J = 7.6 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 146.5, 139.6, 131.9, 128.4, 124.1, 123.5, 52.7, 49.7, 22.4, 22.3 ppm; IR (ATR) 3448, 2972, 2918, 2857, 2160, 1967, 1470, 1445, 1385, 1364, 1192, 1053 cm⁻¹.; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₀H₁₄NOS: 196.0791; found: 196.0796.

2-(*tert*-Butyl)-2,3-dihydrobenzo[*d*]isothiazole 1,1-dioxide (**43**)

General procedure A に基づき、基質として 6 を用いて 43 (25.5 mg, 0.113 mmol, 57%, pale yellow oil.)

¹H NMR (400 MHz, CDCl₃) δ 7.74 (1H, d, J = 7.6 Hz), 7.57 (1H, td, J = 7.2, 1.2 Hz),

7.50 (1H, t, J = 8.0 Hz), 7.37 (1H, d, J = 7.2 Hz), 4.46 (2H, s), 1.57 (9H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 132.8, 132.3, 129.0, 124.1, 121.0, 56.5, 46.8, 28.0 ppm; IR (ATR) 2959, 2916, 2874, 2851, 1721, 1671, 1454, 1369, 1269, 1157, 1042, 760 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd for C₁₁H₁₅NNaO₂S: 248.0716; found: 248.0715.

2-(*tert*-Butyl)-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (62)

General procedure B に基づき、基質として 6 を用いて 62 (27.5 mg, 0.131 mmol, 66%, colorless oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.73 (1H, d, J = 7.2 Hz), 7.47-7.41 (3H, m), 4.95 (1H, d, J = 14.8 Hz), 4.47 (1H, d, J = 14.4 Hz), 1.54 (9H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 139.7, 130.6, 128.2, 123.7, 123.2, 55.6, 51.8, 29.4 ppm; IR (ATR) 3472, 2970, 2936, 2870, 1636, 1470, 1366, 1211, 1034, 752 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₁H₁₆NOS: 210.0947; found: 210.0946.

2-Phenyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (44)

General procedure A に基づき、基質として **7** を用いて **44** (18.2 mg, 0.0742 mmol, 52%, yellow needles)を得た。

Mp 148.1–148.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (1H, d, J = 7.6 Hz), 7.66 (1H, t, J = 7.2 Hz), 7.59 (1H, t, J = 7.2 Hz), 7.50-7.40 (5H, m), 7.20 (1H, t, J = 7.2 Hz) 4.87 (2H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 135.2, 133.1, 132.2, 129.7, 129.4, 124.8, 124.4, 121.6, 119.6, 49.7 ppm; IR (ATR) 3078, 2922, 2851, 2176, 2025, 1979, 1597, 1501, 1466, 1456, 1290, 1271, 1221, 1194, 1169, 1152, 1136, 1115, 1096, 1061, 1042 cm⁻¹; HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₃H₁₁NNaO₂S: 268.0403; found: 268.0402.

2-Phenyl-2,3-dihydrobenzo[d]isothiazole 1-oxide (63)

General procedure B に基づき、基質として **7** を用いて **63** (12.6 mg, 0.0549 mmol, 28%, pale brown solid)を得た。

Mp 139.5-140.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (1H, d, J = 7.6 Hz), 7.62-7.52 (3H, m), 7.42-7.34 (4H, m) 7.09 (1H, t, J = 7.2 Hz)), 5.31 (1H, d, J = 14.4 Hz), 4.93 (1H, d, J = 14.4 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 142.1, 138.5, 131.8, 129.8, 129.0, 124.8, 123.6, 122.7, 116.9, 55.2 ppm; IR (ATR) 2959, 2926, 2870, 2126, 2023, 1682, 1599, 1495, 1443, 1308, 1279, 1111, 1074, 1049 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₃H₁₂NOS: 230.0634; found: 230.0634.

2-(4-Methoxyphenyl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (45)

General procedure A に基づき、基質として **8** を用いて **45** (26.3 mg, 0.0955 mmol, 48%, pale brown solid)を得た。

Mp 104.5–104.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (1H, d, J = 7.6 Hz), 7.65 (1H, t, J = 7.2 Hz), 7.58 (1H, t, J = 7.2 Hz), 7.47-7.42 (3H, m), 6.99-6.95 (2H, m), 4.81 (2H,s), 3.82 (3H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 135.2, 133.0, 132.9, 129.4, 129.0, 125.2, 124.5, 121.7, 115.1, 55.6, 51.5 ppm; IR (ATR) 3092, 2932, 2160, 2021, 1719, 1605, 1506, 1458, 1292, 1244, 1165, 1136, 1107, 1063, 1030, 1011 cm⁻¹.; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₄H₁₄NO₃S: 276.0689; found: 276.0689.

2-(4-Methoxyphenyl)-2,3-dihydrobenzo[d]isothiazole 1-oxide (64)

General procedure A に基づき、基質として 8 を用いて 64 (23.2 mg, 0.0895 mmol, 45%, pale brown solid)を得た。

Mp 114.8–115.6 °C.; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (1H, d, J = 7.6 Hz), 7.59-7.50 (3H, m), 7.33-7.29 (2H, m) 6.96-6.92 (2H, m), 5.30 (1H, d, J = 14.0 Hz), 4.85 (1H, d, J = 14.4 Hz), 3.81 (3H, s) ppm.; ¹³C NMR (125 MHz, CDCl₃) δ 156.3, 145.8, 139.0, 135.2, 131.6, 128.9, 124.7, 123.5, 120.6, 115.1, 56.4, 55.7 ppm.; IR (ATR) 3057, 2932, 2835, 2180, 2056, 1584, 1506, 1450, 1439, 1294, 1269, 1240, 1180, 1126, 1070, 1055, 1034, 1003 cm⁻¹.; HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₄H₁₃NNaO₂S: 282.0559; found: 282.0563.

2-Benzyl-2,3-dihydrobenzo[*d*]isothiazole 1,1-dioxide (46)

General procedure A に基づき、基質として **9** を用いて **46** (32.3 mg, 0.125 mmol, 66%, pale yellow oil) を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.85 (1H, d, J = 6.8 Hz), 7.60-7.52 (2H, m), 7.45-7.43 (2H, m), 7.41-7.30 (4H, m), 4.47 (2H, s), 4.20 (2H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 135.03, 134.99, 133.6, 132.7, 129.1, 128.8, 128.7, 128.2, 124.5, 121.5, 49.8, 47.5 ppm; IR (ATR) 3063, 3032, 2916, 2855, 1717, 1667, 1454, 1288, 1169, 1126, 756, 694 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd for C₁₄H₁₃NNaO₂S: 282.0559; found: 282.0559.

2-Benzyl-2,3-dihydrobenzo[d]isothiazole 1-oxide (65)

General procedure A に基づき、基質として 9 を用いて 65 (37.1 mg, 0.152 mmol, 76%, colorless oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (1H, m), 7.51-7.31 (8H, m), 4.74 (2H, t, J = 10.4 Hz), 4.45 (1H, d, J = 14.8 Hz), 4.30 (1H, d, J = 14.8 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 139.7, 136.5, 131.0, 128.7, 128.5, 128.4, 127.9, 124.2, 123.3, 56.0, 51.9 ppm; IR (ATR) 3487, 3063, 3028, 2920, 2847, 1632, 1450, 1354, 1072, 1049, 752, 702 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd for C₁₄H₁₄NOS: 244.0791; found: 244.0789.

2-Butyl-7-methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (47)

General procedure A に基づき、反応温度を 120 ℃とし、基質として **17** を用いて **47** (12.2 mg, 0.0510 mmol, 25%, pale yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.45 (1H, t, *J* = 8.0 Hz), 7.25 (1H, d, *J* = 8.0 Hz), 7.17 (1H, d, *J* = 7.6 Hz), 4.31 (2H, s), 3.29 (2H, t, *J* = 7.6 Hz), 2.65 (3H, s), 1.73 (2H, quint, *J* = 7.2 Hz), 1.47 (2H, sext, *J* = 7.2 Hz), 0.98 (3H, t, *J* = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 133.8, 133.6, 132.5, 130.5, 121.5, 50.0, 43.8, 29.9, 20.0, 16.8, 13.6 ppm; IR (ATR) 2959, 2932, 2870, 1728, 1605, 1466, 1331, 1288, 1157, 1103,

1018, 775, 752 cm⁻¹; HRMS (ESI) $[M+H]^+$ calcd for $C_{12}H_{18}NO_2S$: 240.1053; found: 240.1052.

2-Butyl-7-methyl-2,3-dihydrobenzo[d]isothiazole 1-oxide (66)

General procedure B に基づき、基質として **17** を用いて **66** (24.3 mg, 0.109 mmol, 54%, colorless oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.36 (1H, t, J= 7.6 Hz), 7.25 (1H, d, J= 7.6 Hz), 7.18 (1H, d, J= 7.6 Hz), 4.80 (1H, d, J= 14.0 Hz), 4.41 (1H, d, J= 14.4 Hz), 3.56-3.49 (1H, m), 3.31-3.24 (1H, m), 2.63 (3H, s), 1.83-1.72 (2H, m), 1.44 (2H, sext, J= 7.2 Hz), 0.97 (3H, t, J= 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 139.8, 135.0, 131.0, 129.5, 120.5, 57.1, 47.5, 30.7, 20.1, 18.8, 13.7 ppm; IR (ATR) 3503, 2955, 2928, 2862, 1597, 1466, 1377, 1107, 1065, 776 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₈NOS: 224.1104; found: 224.1103.

2-Butyl-6-methoxy-2,3-dihydro-1,1-dioxide-benzo[d]isothiazole (48)

General procedure A に基づき、基質として **18** を用いて **48** (29.0 mg, 0.114 mmol, 57%, brown oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.27-7.25 (2H, m), 7.41 (1H, dd, J = 8.2, 2.8 Hz), 4.47 (2H, s), 3.83 (3H, s), 3.28 (2H, t, J = 7.2 Hz), 1.76-1.69 (2H,m), 1.50-1.41 (2H, m), 0.98 (3H, t, J = 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 136.1, 125.5, 125.2, 121.1, 104.1, 55.8, 44.0, 29.9, 20.0, 13.6 ppm; IR (ATR) 3437, 3059, 2968, 2941, 2866, 2160, 2016, 1724, 1616, 1497, 1267, 1244, 1153, 1134, 1057, 1026 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₂H₁₈NO₃S: 256.1002; found: 256.1005.

2-Butyl-6-methoxy-2,3-dihydro-1-oxide-benzo[d]isothiazole (67)

General procedure B に基づき、基質として **18** を用いて **67** (31.7 mg, 0.132 mmol, 66%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.33 (1H, d, J = 8.8 Hz), 7.25 (1H, d, J = 2.4 Hz), 7.03 (1H, dd, J = 8.0, 2.4 Hz), 4.74 (1H, d, J = 14.4 Hz), 4.37 (1H, d, J = 14.0 Hz),

3.83 (3H, s), 3.55-3.47 (1H, m), 3.32-3.25 (1H, m), 1.80-1.72 (2H, m), 1.48-1.39 (2H, m), 0.97 (3H, t, *J* = 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 147.7, 131.4, 124.0, 118.4, 108.0, 56.2, 55.7, 47.5, 30.8, 20.1, 13.7 ppm; IR (ATR) 3501, 2957, 2932, 2860, 1609, 1493, 1458, 1441, 1294, 1263, 1240, 1067, 1047, 1022 cm⁻¹; HRMS (ESI) [M+H]⁺ *m/z* calcd for C₁₂H₁₈NO₂S: 240.1053; found: 240.1054.

2-Butyl-6-(trifluoromethyl)-2,3-dihydrobenzo[*d*]isothiazole 1,1-dioxide (**49**)

General procedure A に基づき、基質として **19** を用いて **49** (33.2 mg, 0.113 mmol, 57%, pale brown oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 8.09 (1H, s), 7.86 (1H, d, J= 8.4 Hz), 7.56 (1H, d, J= 7.6 Hz), 4.43 (2H, s), 3.32 (2H, t, J= 7.2 Hz), 1.78-1.71 (2H, m), 1.51-1.41 (2H, m), 0.98 (2H, t, J= 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 136.2, 132.0 (q, ² J_{CF} = 33.8 Hz), 129.5 (q, ⁴ J_{CF} = 3.3 Hz), 125.3, 123.0 (q, ¹ J_{CF} = 272 Hz), 119.1 (q, ³ J_{CF} = 4.1 Hz), 50.2, 43.9, 29.8, 20.0, 13.6 ppm; IR (ATR) 2961, 2932, 2874, 1705, 1620, 1458, 1321, 1287, 1263, 1242, 1215, 1153, 1125, 1080, 1055, 1034 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₂H₁₄F₃NO₂S: 294.0770; found: 294.0769.

2-Butyl-6-(trifluoromethyl)-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (68)

General procedure B に基づき、基質として **19** を用いて **68** (29.4 mg, 0.100 mmol, 53%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 8.04 (1H, s), 7.77 (1H, d, J= 8.0 Hz), 7.60 (1H, d, J= 7.6 Hz), 4.89 (1H, d, J= 15.2 Hz), 4.51 (1H, d, J= 15.6 Hz), 3.59-3.51 (1H, m), 3.37-3.23 (1H, m), 1.49-1.39 (2H, m), 1.34-1.26 (2H, m), 0.98 (3H, t, J= 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 143.4, 131.1 (q, ² J_{CF} = 32.9 Hz), 127.9 (q, ⁴ J_{CF} = 3.3 Hz), 123.9, 123.2 (q, ¹ J_{CF} = 272 Hz), 121.5 (q, ³ J_{CF} = 4.1 Hz), 56.4, 47.5, 30.6, 20.1, 13.7 ppm; IR (ATR) 3049, 2963, 2936, 2868, 1616, 1464, 1412, 1323, 1254, 1167, 1119, 1076, 1053, 1032, 1013 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₂H₁₅F₃NOS: 278.0821; found: 278.0829.

2-Butyl-5-methoxy-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (52)

General procedure A に基づき、基質として **21** を用いて **52** (32.0 mg, 0.125 mmol, 63%, brown oil)を得た。.

¹H NMR (500 MHz, CDCl₃) δ 7.69 (1H, d, J = 8.0 Hz), 7.01 (1H, dd, J = 8.8, 2.0 Hz), 6.82 (1H, d, J = 2.0 Hz), 4.30 (2H, s), 3.86 (3H, s), 3.25 (2H, t, J = 7.6 Hz), 1.72 (2H, quint, J = 7.6 Hz), 1.45 (2H, sext, J = 7.2 Hz), 0.97 (3H, t, J = 8.0 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 136.2, 127.3, 122.8, 115.8, 108.6, 55.7, 50.5, 44.0, 29.8, 20.0, 13.6 ppm; IR (ATR) 2957, 2934, 2870, 1738, 1599, 1485, 1279, 1125, 552 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₈NO₃S: 256.1002; found: 256.1001.

2-Butyl-5-methoxy-2,3-dihydrobenzo[d]isothiazole 1-oxide (71)

General procedure B に基づき、基質として **21** を用いて **71** (34.3 mg, 0.143 mmol, 72%, pale yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.66 (1H, d, J = 8.5 Hz), 6.96-6.92 (2H, m), 4.75 (1H, d, J = 14.5 Hz), 4.42 (1H, d, J = 15.0 Hz), 3.85 (3H, s), 3.51-3.46 (1H, m), 3.28-3.23 (1H, m), 1.79-1.73 (2H, m), 1.43 (2H, sext, J = 7.5 Hz), 0.97 (3H, t, J = 7.5 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 142.1, 139.0, 125.4, 114.4, 108.2, 56.7, 55.6, 47.5, 30.7, 20.1, 13.7 ppm; IR (ATR) 3472, 2957, 2932, 2860, 1597, 1477, 1319, 1275, 1153, 1065, 1028, 816 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₈ClNO₂S: 240.1053; found: 240.1052.

2-Butyl-5-chloro-2,3-dihydrobenzo[*d*]isothiazole 1,1-dioxide (53)

General procedure A に基づき、基質として **22** を用いて **53** (28.3 mg, 0.109 mmol, 54%, brown solid)を得た。

Mp 59.0–59.8 °C; ¹H NMR (495 MHz, CDCl₃) δ 7.73 (1H, d, *J* = 8.5 Hz), 7.50 (1H, d, *J* = 8.5 Hz), 7.38 (1H, s), 4.32 (2H, s), 3.28 (2H, t, *J* = 7.4 Hz), 1.75-1.69 (2H, m),

1.48-1.41 (2H, m), 0.97 (3H, t, J = 7.1 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 135.6, 133.7, 129.6, 124.7, 122.7, 49.9, 43.9, 29.7, 20.0, 13.6 ppm; IR (ATR) 3096, 2955, 2868, 2160, 2023, 1597, 1580, 1449, 1371, 1279, 1244, 1206, 1186, 1161, 1148, 1132, 1061, 1034 cm⁻¹; HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₁H₁₄ClNNaO₂S: 282.0326; found: 282.0321.

2-Butyl-5-chloro-2,3-dihydrobenzo[d]isothiazole 1-oxide (72)

General procedure B に基づき、基質として **22** を用いて **72** (32.4 mg, 0.133 mmol, 66%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.69 (1H, d, J = 8.4 Hz), 7.44-7.41 (2H, m), 4.78 (1H, d, J = 14.4 Hz), 4.42 (1H, d, J = 15.2 Hz), 3.54-3.47 (1H, m), 3.32-3.25 (1H, m), 1.82-1.73 (2H, m), 1.48-1.38 (2H, m), 0.97 (3H, t, J = 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 141.6, 137.3, 128.7, 125.3, 123.6, 56.3, 47.5, 30.6, 20.1, 13.7 ppm; IR (ATR) 2957, 2930, 2860, 1570, 1456, 1414, 1206, 1171, 1138, 1088, 1065, 1051, 1024 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₁H₁₅ClNOS: 244.0557; found: 244.0558.

2-Butyl-4-methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (54)

General procedure A に基づき、基質として **23** を用いて **73** (24.4 mg, 0.102 mmol, 51%, brown solid)を得た。

M.p. 82.1–83.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (1H, d, J= 7.2 Hz), 7.42 (2H, m), 4.26 (2H, s), 3.32 (2H, t, J= 7.2 Hz), 2.31 (3H, s), 1.79⁻1.72 (2H, m), 1.47 (2H, sext, J= 7.2 Hz), 0.99 (3H, t, J= 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 135.0, 134.0, 133.4, 132.2, 129.2, 118.8, 49.6, 43.9, 30.0, 20.1, 17.3, 13.7 ppm; IR (ATR) 3075, 2959, 2932, 2862, 1462, 1377, 1277, 1219, 1188, 1161, 1126, 1030, 787 cm⁻¹; HRMS (ESI) [M+Na]⁺ calcd for C₁₂H₁₈NO₂S: 240.1053; found: 240.1056.

2-Butyl-4-methyl-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (73)

General procedure B に基づき、基質として **23** を用いて **73** (24.1 mg, 0.108 mmol, 54%, colorless oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.59 (1H, d, J= 7.2 Hz), 7.36 (1H, t, J= 7.6 Hz), 7.28 (1H, d, J= 8.8 Hz), 4.70 (1H, d, J= 14.8 Hz), 4.38 (1H, d, J= 14.8 Hz), 3.57-3.50 (1H, m), 3.35-3.28 (1H, m), 2.34 (3H, s), 1.79 (2H, quint, J= 7.6 Hz), 1.44 (2H, sext, J= 7.2 Hz), 0.98 (3H, t, J= 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 138.3, 133.4, 131.8, 128.6, 121.5, 56.0, 47.5, 30.8, 20.1, 19.1, 13.7 ppm; IR (ATR) 3503, 2955, 2928, 2862, 1597, 1466, 1377, 1107, 1065, 776 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₈NOS: 224.1104; found: 224.1103.

Methyl 2-butyl-2,3-dihydrobenzo[*d*]isothiazole-6-carboxylate 1,1-dioxide (50)

General procedure A に基づき、基質として **25** を用いて **50** (31.5 mg, 0.111 mmol, 56%, brown solid)を得た。

M.p. 69.6–70.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (1H, d, J= 1.2 Hz), 8.28 (1H, d, J= 7.8, 1.2 Hz), 7.48 (1H, d, J= 8.4 Hz), 4.41 (2H, s), 3.97 (3H, s), 3.31 (2H, t, J= 7.2 Hz), 1.78-1.70 (2H, m), 1.46 (2H, sext, J= 7.2 Hz), 0.98 (3H, t, J= 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 138.2, 135.9, 133.6, 131.6, 124.6, 123.1, 52.7, 50.4, 43.9, 29.8, 20.1, 13.6 ppm; IR (ATR) 2951, 2870, 1717, 1439, 1285, 1177, 1134, 1107, 1030, 756 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₃H₁₈NO₄S: 284.0951; found: 284.0950.

Methyl 2-butyl-2,3-dihydrobenzo[d]isothiazole-6-carboxylate 1-oxide (69)

General procedure B に基づき、基質として **25** を用いて **69** (31.3 mg, 0.117 mmol, 59%, orange solid)を得た。

M.p. 64.8–65.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (1H, s), 8.18 (1H, dd, *J* = 7.8, 1.6 Hz), 7.53 (1H, d, *J* = 8.0 Hz), 4.84 (1H, d, *J* = 15.6 Hz), 4.49 (1H, d, *J* = 15.2 Hz), 3.95 (3H, s), 3.57-3.50 (1H, m), 3.35-3.28 (1H, m), 1.82-1.74 (2H, m), 1.44 (2H, sext,

J = 7.2 Hz), 0.98 (3H, t, J = 7.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) & 166.7, 147.5, 144.4, 132.1, 130.7, 125.6, 123.4, 56.6, 52.4, 47.5, 30.7, 20.1, 13.7 ppm; IR (ATR) 2947, 2855, 1709, 1435, 1281, 1246, 1107, 1069, 1022, 764 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₃H₁₈NO₃S: 268.1002; found: 268.1001.

2-Butyl-3,4-dihydro-2*H*-benzo[*e*][1,2]thiazine 1,1-dioxide (55)

General procedure A に基づき、基質として **29** を用いて **55** (5.20 mg, 0.0217 mmol, 12%, yellow oil)を得た。

¹H NMR (495 MHz, CDCl₃) δ 7.83 (1H, dd, J = 8.0, 1.1 Hz), 7.43 (1H, td, J = 7.8, 1.1 Hz), 7.36 (1H, t, J = 7.4 Hz), 7.21 (1H, d, J = 7.9 Hz), 3.87 (2H, t, J = 6.2 Hz), 3.17 (2H, t, J = 6.8 Hz), 2.99 (2H, t, J = 6.5 Hz), 1.63-1.58 (2H, m), 1.43-1.36 (2H, m), 0.94 (3H, t, J = 7.4 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 137.2, 135.2, 131.9, 129.5, 127.6, 124.8, 46.8, 45.0, 30.5, 23.8, 19.9, 13.8 ppm; IR (ATR) 2959, 2926, 2870, 1736, 1477, 1462, 1445, 1325, 1287, 1167, 1157, 1130, 1072 cm⁻; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₂H₁₈NO₂S: 240.1053; found: 240.1055.

2-Butyl-3,4-dihydro-2*H*-benzo[*e*][1,2]thiazine 1-oxide (74)

General procedure B に基づき、基質として **29** を用いて **74** (10.8 mg, 0.0464 mmol, 23%, yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.56 (1H, dd, J= 7.4, 1.6 Hz), 7.42-7.32 (2H, m), 7.25 (1H, d, J= 7.6 Hz), 3.86 (1H, td, J= 12.2, 4.0 Hz), 3.38-3.31 (1H, m), 3.12-3.03 (2H, m), 3.00-2.92 (2H, m), 1.68 (2H, quint, J= 7.2 Hz), 1.43-1.34 (2H, m), 0.94 (3H, t, J= 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 132.9, 131.1, 129.9, 129.0, 127.0, 53.6, 38.3, 30.2, 29.1, 20.0, 13.7 ppm; IR (ATR) 3497, 2955, 2930, 2860, 1722, 1638, 1458, 1441, 1377, 1279, 1103, 1055 cm⁻¹; HRMS (ESI) [M+H]⁺ m/z calcd for C₁₂H₁₈NOS: 224.1104; found: 224.1102.

2-Butyl-2,3-dihydrothieno[2,3-c]pyridine 1-oxide (78)

General procedure B に基づき、**29** を基質とし、0.100 mmol スケールかつ DMSO (3.20 mL)で、**78** (8.90 mg, 0.0425 mmol, 42%, colorless oil)を得た。

¹H NMR (400 MHz, (CD₃)₂CO) δ 9.03 (1H, s), 8.71 (1H, d, J = 5.2 Hz), 7.65 (1H, d, J = 5.2 Hz), 4.79 (1H, d, J = 16.8 Hz), 4.64 (1H, d, J = 16.4 Hz), 3.52-3.45 (1H, m), 3.36-3.29 (1H, m), 1.82- 1.73 (2H, m), 1.49-1.39 (2H, m), 0.96 (3H, t, J = 7.6 Hz) ppm; ¹³C NMR (125 MHz, (CD₃)₂CO) δ 151.1, 149.2, 145.2, 144.7, 119.1, 56.0, 47.1, 30.6, 19.9, 13.2 ppm; IR (ATR) 2928, 2855, 1724, 1589, 1501, 1447, 1408, 1246, 1211, 1138, 1072, 1030, 837, 721 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₁₀H₁₅N₂OS: 211.0900; found: 211.0905.

N-Butyl-2-bromobenzylamine (80)

2-Bromobenzyl alcohol を基質とし、2と同様の手法で80(0.378 g, 1.56 mmol, 78%, pale yellow oil)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.54 (1H, d, J= 7.6 Hz), 7.39 (1H, dd, J= 8.0, 2.0 Hz), 7.28 (1H, t, J= 8.4 Hz), 7.12 (1H, td, J= 8.0, 2.0 Hz), 3.86 (2H, s), 2.63 (2H, t, J= 7.6 Hz), 1.54-1.47 (2H, m), 1.36 (2H, sext, J= 7.6 Hz), 0.92 (3H, t, J= 7.2 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 132.7, 130.2, 128.4, 127.3, 123.9, 53.8, 48.9, 32.2, 20.4, 14.0 ppm; IR (ATR) 2955, 2924, 2870, 2816, 1462, 1439, 1354, 1196, 1123, 1026, 745 cm⁻¹; HRMS (DART) [M+H]⁺ calcd for C₁₁H₁₇BrN: 242.0539; found: 242.0534. Synthetic method of **85**, **86** ⁵¹⁾

4-Iodophenol (0.550 g, 2.50 mmol)、K₂CO₃ (1.73 g, 12.5 mmol, 5.00 eq.)、アセトン (16.0 mL)の混合溶液に BnBr (0.427 g, 2.50 mmol, 1.00 eq.)を加え、加熱還流下で 撹拌した。21 時間後、水を加え、EtOAc で抽出し、飽和食塩水で洗った後に、Na₂SO₄ で乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 30/1)によって精製し、**85** (0.624 g, 2.01 mmol, 81%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.55 (2H, d, J = 9.5 Hz), 7.41–7.37 (4H, m), 7.34–7.33 (1H, m), 6.75 (2H, d, J = 9.0 Hz), 5.17 (2H, s) ppm.

4-Bromophenolを基質とし、**85**と同様の方法で**86**(0.641 g, 2.44 mmol, 97%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.41–7.33 (7H, m), 6.85 (2H, d, *J* = 9.0 Hz), 5.04 (2H, s) ppm.

Synthetic method of 87 ⁵²⁾

N,N-dimethylaniline (0.364 g, 3.00 mmol)、飽和 Na₂CO₃水溶液 (0.840 mL)、シク ロヘキサン (1.80 mL)の混合液に I₂ (0.838 g, 3.30 mmol, 1.10 eq.)を加え、空気中、 室温下で撹拌した。4 時間後、飽和 Na₂CO₃水溶液を加え、EtOAc で抽出後、飽和 Na₂S₂O₃水溶液および飽和食塩水で洗い、Na₂SO₄で乾燥し、減圧濃縮した。シリカゲ ルカラムクロマトグラフィー(hexane/EtOAc = 10/1)によって精製し、**87** (0.460 g, 1.86 mmol, 62%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.46 (2H, d, J = 9.0 Hz), 6.49 (2H, d, J = 9.0 Hz), 2.92 (6H, s) ppm.

Synthetic method of 88 ⁵³⁾

5-Bromo-2-hydroxyacetophenone (0.860 g, 4.00 mmol)、K₂CO₃ (1.11 g, 8.00 mmol, 2.00 eq.)、アセトン (12.0 mL)の混合溶液に MeI (1.14 g, 8.00 mmol, 2.00 eq.)を加え、 加熱還流下で撹拌した。18 時間後、不溶物を濾過によって除去し、ろ液を減圧濃縮した。シリカゲルカラムクロマトグラフィー(hexane/EtOAc = 7/1)によって精製し、**88** (0.821 g, 3.58 mmol, 90%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.84 (1H, d, J = 2.5 Hz), 7.55 (1H, dd, J = 8.5, 2.5 Hz), 6.86 (1H, d, J = 8.5 Hz), 3.91 (3H, s), 2.60 (3H, s) ppm.

Synthetic method of **89** ⁵⁴⁾

Methyl σanisate (0.831 g, 5.00 mmol)、MeCN (20.0 mL)の混合溶液に NBS (0.979 g, 5.50 mmol, 1.10 eq.)の MeCN (20.0 mL)溶液を徐々に滴下した。 60 ℃で 47 時間撹 拌後、水を加え、EtOAc で 2 回抽出した。続いて、Na₂SO₄ で乾燥し、減圧濃縮した。 シリカゲルカラムクロマトグラフィー(hexane/CHCl₃ = 2/1)によって精製し、**89** (0.925 g, 3.78 mmol, 76%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.91 (1H, d, J = 2.5 Hz), 7.56 (1H, dd, J = 8.5, 2.5 Hz), 6.87 (1H, d, J = 8.5 Hz), 3.89 (6H, s) ppm.

General procedure for synthesis of symmetrical diaryl sulfones

封管に K₂S₂O₅ (33.3 mg, 0.150 mmol, 0.750 eq.)、Pd(OAc)₂ (4.50 mg, 0.0200 mmol, 10.0 mol%)、 P(*t*·Bu)₃·HBF₄ (11.6 mg, 0.0400 mmol, 20.0 mol%)、基質 (0.400 mmol, 2.00 eq.)、 DMF (0.40 mL)、 *i*Pr₂NEt (77.5 mg, 0.600 mmol, 3.00 eq.)の順に加え、ア ルゴン雰囲気下 100 ℃で 20 時間加熱撹拌した。その後、酢酸エチルに溶かし、酢酸 エチル層を水及び飽和食塩水で洗い、Na₂SO₄ で乾燥し、減圧濃縮した。残渣を分取薄 層クロマトグラフィーで精製し、目的物を得た。

4,4'-Sulfonylbis(*N*,*N*-dimethylaniline) (**90**)

87 を基質とし、90 (42.1 mg, 0.138 mmol, 69%, pale yellow solid)を得た。

4-Bromo-*N,N*-dimethylaniline を基質とし、反応温度を 120℃の条件下で、**90** (55.5 mg, 0.182 mmol, 91%, white solid)を得た。

Mp 259.3-259.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (4H, d, J = 9.0 Hz), 6.63 (2H, d, J = 9.0 Hz), 2.99 (12H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 152.6, 128.7, 111.0, 40.0 ppm (one carbon atom was overlapped with another.); IR (ATR) 2914, 2818, 1589, 1557, 1514, 1443, 1368, 1292, 1227, 1136, 1063, 997, 814, 777, 660, 540 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₆H₂₁N₂O₂S: 305.1318; found: 305.1315.

4,4'-Sulfonyldianiline (91)

4-Iodoaniline を基質とし、91 (22.6 mg, 0.0910 mmol, 46%, brown solid)を得た。
4-Bromoaniline を基質とし、91 (29.0 mg, 0.118 mmol, 58%, brown solid)を得た。
Mp 172.2-172.8 °C; ¹H NMR (500 MHz, (CD₃)₂CO) δ 7.54 (4H, d, J = 9.0 Hz),
6.69 (4H, d, J = 9.0 Hz), 5.43 (4H, brs) ppm; ¹³C NMR (125 MHz, (CD₃)₂CO)
δ 152.6, 130.2, 129.0, 113.3 ppm; IR (ATR) 3449, 3364, 3337, 3237, 2506, 2486, 1626,
1587, 1493, 1433, 1273, 1138, 1101, 1070, 1005, 949, 822, 718, 691, 633, 530 cm⁻¹;
HRMS (DART) [M+H]⁺ m/z calcd for C₁₂H₁₃N₂O₂S: 249.0692; found: 249.0690.

4,4'-Sulfonylbis(methoxybenzene) (82) 65)

4-Iodoanisole を基質とし、82 (44.7 mg, 0.161 mmol, 81%, white solid)を得た。

4-Bromoanisole を基質とし、**82**(49.7 mg, 0.179 mmol, 89%, white solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.85 (4H, d, *J* = 8.8 Hz), 6.95 (2H, d, *J* = 8.8 Hz), 3.84 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 163.1, 133.9, 129.5, 114.4, 55.6 ppm.

4,4'-sulfonylbis((benzyloxy)benzene) (92)

1-(Benzyloxy)-4-iodobenzene を基質とし、**92** (58.8 mg, 0.137 mmol, 68%, white solid)を得た。

1-(Benzyloxy)-4-bromobenzene を基質とし、**92** (59.6 mg, 0.138 mmol, 69%, white solid)を得た。

Mp 197.0–197.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (4H, d, J = 8.5 Hz), 7.40–7.32 (10H, m), 7.02 (4H, d, J = 9.0 Hz), 5.08 (4H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 135.9, 134.2, 129.7, 128.8, 128.5, 127.6, 115.5, 70.4 ppm. IR (ATR) 3067, 3032, 2945, 2928, 2872, 1591, 1578, 1497, 1466, 1454, 1387, 1317, 1294, 1244, 1179, 1146, 1107, 1001, 928, 810, 752, 725, 692, 610, 588, 544 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₂₆H₂₃O₄S: 431.1312; found: 431.1315.

4,4'-Sulfonyldiphenol (93)

4-Iodophenol を基質とし、**93** (37.2 mg, 0.149 mmol, 74%, pale yellow solid)を得た。

4-Bromophenol を基質とし、**93** (41.6 mg, 0.166 mmol, 83%, pale yellow solid)を 得た。

Mp 247.2 – 247.9 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 9.39 (2H, brs), 7.79 (4H, d, J = 8.5 Hz), 6.98 (4H, d, J = 8.5 Hz) ppm; ¹³C NMR (125 MHz, (CD₃)₂CO) δ 162.2, 134.4, 130.4, 116.6 ppm. IR (ATR) 3402, 3360, 1601, 1582, 1497, 1443, 1366, 1279,

1221, 1177, 1134, 1099, 1072, 835, 812, 721, 689, 648, 536 cm⁻¹; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₂H₁₁O₄S: 251.0373; found: 251.0375.

(Sulfonylbis(4,1-phenylene))bis(methylsulfane) (94) 66)

(4-Bromophenyl)(methyl)sulfane を基質とし、94 (34.5 mg, 0.111 mmol, 56%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.85 (4H, d, J = 8.5 Hz), 7.27 (4H, d, J = 8.5 Hz), 2.48 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 146.4, 137.4, 127.7, 125.4, 14.7 ppm; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₄H₁₅O₂S₃: 311.0229; found: 311.0237.

4,4'-Sulfonylbis(methylbenzene) (95) 66), 67)

4-Iodotoluene を基質とし、95 (28.5 mg, 0.116 mmol, 58%, white solid)を得た。

4-Bromotoluene を基質とし、**95** (40.4 mg, 0.164 mmol, 82%, white solid)を得た。 ¹H NMR (400 MHz, CDCl₃) δ 7.81 (4H, d, *J* = 8.0 Hz), 7.28 (4H, d, *J* = 8.0 Hz), 2.36 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 143.9, 139.0, 129.8, 127.5, 21.5 ppm.

(Sulfonylbis(4,1-phenylene))bis(trimethylsilane) (96)

(4-Bromophenyl)trimethylsilane を基質とし、**96** (51.2 mg, 0.141 mmol, 71%, white solid)を得た。

Mp 156.1–156.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (4H, d, J = 8.5 Hz), 7.64 (4H, d, J = 8.5 Hz), 0.263 (18H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 147.7, 141.9, 134.2, 126.6, -1.32 ppm; IR (ATR) 2955, 1381, 1315, 1248, 1157, 1069, 1015, 837, 822, 754, 635, 606, 573 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₈H₂₇O₂SSi₂: 363.1265; found: 363.1266.

(Sulfonylbis(4,1-phenylene))dimethanol (97)

4-Bromobenzyl alcohol を基質とし、反応温度 120 ℃の条件下、**97** (35.0mg, 0.126 mmol, 63%, white solid)を得た。

Mp 144.1–144.6 °C; ¹H NMR (500 MHz, (CD₃)₂CO) δ 7.92 (4H, d, J = 8.5 Hz), 7.57 (4H, d, J = 8.5 Hz), 4.70 (4H, s), 4.50 (2H, brs) ppm; ¹³C NMR (125 MHz, (CD₃)₂CO) δ 149.4, 141.5, 128.3, 127.8, 63.7 ppm; IR (ATR) 3389, 3258, 2918, 1599, 1458, 1416, 1402, 1314, 1306, 1290, 1269, 1202, 1150, 1103, 1070, 1028, 1013, 986, 810, 800, 723, 702, 677, 654 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₄H₁₅O₄S: 279.0686; found: 279.0683.

Diphenyl sulfone (98) ⁶⁸⁾

Iodobenzene を基質とし、**98** (11.6 mg, 0.0417 mmol, 38%, white solid)を得た。 Bromobenzene を基質とし、**98** (25.2 mg, 0.115 mmol, 58%, white solid)を得た。 ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.94 (4H, m), 7.59–7.48 (6H, m) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 141.6, 133.2, 129.3, 127.6 ppm.

4,4"-Sulfonyldi-1,1'-biphenyl (99) ⁶⁹⁾

4-Bromobiphenyl を基質とし、99 (51.1mg, 0.138 mmol, 69%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 8.04 (4H, d, J = 8.0 Hz), 7.72 (4H, d, J = 8.0 Hz), 7.57 (4H, d, J = 8.0 Hz), 7.46 (4H, t, J = 7.5 Hz), 7.40 (2H, t, J = 7.5 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 146.3, 140.3, 139.3, 129.2, 128.7, 128.3, 128.1, 127.5 ppm; IR (ATR) 3063, 3034, 1591, 1479, 1447, 1400, 1319, 1306, 1152, 1107, 1074, 1001, 845, 826, 752, 716, 683, 569 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₂₄H₁₉O₂S: 371.1100; found: 371.1109.

4,4'-Sulfonylbis(chlorobenzene) (100) ⁶⁶⁾

1-Bromo-4-chlorobenzene を基質とし、**100** (11.1 mg, 0.0387 mmol, 19%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.86 (4H, d, J = 9.0 Hz), 7.48 (2H, d, J = 9.0 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 140.3, 139.8, 129.9, 129.2 ppm; IR (ATR) 3096, 2918, 2849, 1915, 1724, 1649, 1578, 1474, 1395, 1325, 1281, 1155, 1105, 1086, 1070, 1009, 824, 764, 745, 633, 577 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₂H₉Cl₂O₂S: 286.9695; found: 286.9698.

1,1'-(Sulfonylbis(4,1-phenylene))bis(ethan-1-one) (101)

4-Bromoacetophenone を基質とし、**101** (7.60 mg, 0.0251 mmol, 13%, pale yellow solid)を得た。

Mp 213.6-213.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.04 (8H, m), 2.63 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 196.5, 144.6, 140.6, 129.2, 128.2, 26.9 ppm; IR (ATR) 2920, 2851, 1690, 1603, 1572, 1396, 1360, 1254, 1153, 1105, 1074, 1009, 959, 845, 777, 644 cm⁻¹; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₆H₁₅O₄S: 303.0686; found: 303.0690.

3,3'-Sulfonyldianiline (104)

3-Bromoaniline を基質とし、**104** (24.7 mg, 0.0995 mmol, 50%, pale yellow solid) を得た。

Mp 170.3 – 170.9 °C; ¹H NMR (500 MHz, (CD₃)₂CO) δ 7.21–7.16 (4H, m), 7.08–7.06 (2H, m), 6.85–6.83 (2H, m) 5.13 (4H, brs) ppm; ¹³C NMR (125 MHz, (CD₃)₂CO) δ 149.5, 143.2, 129.8, 118.3, 115.1, 112.2 ppm.; IR (ATR) 3455, 3387, 3358, 2920, 1618, 1597, 1481, 1454, 1273, 1138, 1088, 1067, 910, 862, 783, 714, 673, 608 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₂H₁₃N₂O₂S: 249.0692; found: 249.0695.

3,3'-Sulfonylbis(methoxybenzene) (105)

3-Iodoanisole を基質とし、**105** (11.6 mg, 0.0417 mmol, 21%, white solid)を得た。 3-Bromoanisole を基質とし、**105** (38.0 mg, 0.137 mmol, 68%, white solid)を得た。 Mp 84.9-86.1 °C; ¹H NMR (400 MHz, CDCl₃) & 7.51 (2H, d, *J* = 8.4, 0.8 Hz), 7.45 (2H, t, *J* = 2.4 Hz), 7.40 (2H, t, *J* = 8.4 Hz), 7.08 (2H, ddd, *J* = 8.4, 2.4, 0.8 Hz), 3.84 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) & 160.0, 142.6, 130.4, 119.9, 119.6, 112.3, 55.7 ppm; IR (ATR) 3080, 2943, 2837, 1593, 1578, 1477, 1431, 1300, 1287, 1240, 1184, 1140, 1086, 1038, 860, 708, 610 cm⁻¹; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₅H₂₆NO₃S: 279.0686; found: 279.0691.

3,3'-Sulfonyldiphenol (**106**)

3-Bromophenol を基質とし、**106** (29.4 mg, 0.117 mmol, 59%, white solid)を得た。 Mp 191.6-192.3 °C; ¹H NMR (400 MHz, (CD₃)₂CO) δ 9.07 (2H, s), 7.43-7.41 (4H, m), 7.38 (2H, d, *J* = 1.0 Hz), 7.11-7.08 (2H, m) ppm; ¹³C NMR (125 MHz, (CD₃)₂CO) δ 158.8, 144.1, 131.5, 121.2, 119.3, 114.8 ppm; IR (ATR) 3433, 3368, 3242, 3086, 2918, 2681, 1587, 1470, 1445, 1342, 1296, 1279, 1261, 1215, 1132, 1088, 1080, 1061, 993, 910, 877, 789, 712, 675, 606 cm⁻¹; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₂H₁₁O₄S: 251.0373; found: 251.0371.

3,3'-Sulfonylbis(methylbenzene) (107) $^{16)}$

3-Iodotoluene を基質とし、**107** (36.6 mg, 0.149 mmol, 74%, white solid)を得た。 3-Bromotoluene を基質とし、**107** (37.8 mg, 0.153 mmol, 77%, white solid)を得た。

¹H NMR (500 MHz, CDCl₃) δ 7.75–7.74 (4H, m,), 7.40–7.35 (4H, m), 2.40 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 141.6, 139.6, 134.0, 129.2, 128.0, 124.9, 21.5 ppm; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₄H₁₅O₂S: 247.0787; found: 247.0785.

4,4'-Sulfonylbis(1,2-dimethoxybenzene) (**116**)

1-Bromo-3,4-dimethoxybenzene を基質とし、**116** (52.6 mg, 0.155 mmol, 78%, white solid)を得た。

Mp 153.7–154.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.51 (2H, dd, J = 8.5, 1.5 Hz), 7.34 (2H, d, J = 1.5 Hz), 6.89 (2H, d, J = 8.5 Hz), 3.879 (6H, s), 3.876 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 152.8, 149.2, 133.8, 121.5, 110.8, 109.6, 56.3, 56.2 ppm; IR (ATR) 3086, 3007, 2940, 2841, 1584, 1504, 1464, 1437, 1404, 1337, 1306, 1258, 1238, 1186, 1148, 1125, 1096, 1016, 899, 864, 817, 766, 685, 542 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₂H₁₉O₆S: 339.0897; found: 339.0897.

1,1'-(Sulfonylbis(6-methoxy-3,1-phenylene))bis(ethan-1-one) (117)

89 を基質とし、117 (37.5 mg, 0.103 mmol, 52%, white solid)を得た。

Mp 173.6 – 174.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (2H, d, J = 2.5 Hz), 7.34 (2H, m), 7.05 (2H, d, J = 9.0 Hz), 3.95 (6H, s), 2.56 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 197.8, 161.9, 133.8, 132.8, 130.2, 128.8, 112.3, 56.2, 31.6 ppm; IR (ATR) 2945, 2849, 1670, 1585, 1483, 1437, 1396, 1354, 1310, 1277, 1252, 1219, 1140, 1109, 1084, 1063, 1015, 980, 856, 824, 717, 679 cm⁻¹; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₈H₁₉O₆S: 363.0897; found: 363.0904.

Dimethyl 5,5'-sulfonylbis(2-methoxybenzoate) (118)

90 を基質とし、118 (40.1 mg, 0.102 mmol, 51%, white solid)を得た。

Mp 170.3 – 171.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.31 (2H, d, J = 2.5 Hz), 8.00 (2H, dd, J = 9.0, 2.5 Hz), 7.05 (2H, d, J = 9.0 Hz), 3.96 (6H, s), 3.88 (6H, s) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 162.6, 133.2, 133.0, 131.6, 120.9, 112.7, 56.6, 52.5 ppm; IR (ATR) 3084, 2953, 2849, 1740, 1719, 1694, 1595, 1578, 1489, 1435, 1408, 1308, 1271, 1248, 1146, 1119, 1078, 1013, 974, 876, 822, 799, 785, 704, 660, 613

2,2'-Sulfonyldinaphthalene (119)

2-Bromonaphthalene を基質とし、**119** (42.7 mg, 0.134 mmol, 67%, pale brown solid)を得た。

Mp 176.2 – 176.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.64 (2H, s), 7.98 (2H, d, J = 7.5 Hz), 7.90 (4H, s), 7.84 (2H, d, J = 7.5 Hz), 7.60 (4H, quint, J = 7.0 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 135.0, 132.2, 129.7, 129.4, 129.1, 127.9, 127.6, 122.7 ppm (one carbon atom was overlapped with another.); IR (ATR) 3051, 2918, 2849, 1722, 1587, 1503, 1454, 1348, 1315, 1271, 1242, 1150, 1126, 1078, 957, 901, 858, 816, 745, 677, 648, 542 cm⁻¹; HRMS (DART) [M+H]⁺ *m/z* calcd for C₂₀H₁₅O₂S₁: 319.0787; found: 319.0792.

6,6'-Sulfonylbis(naphthalen-2-ol) (120)

6-Bromo-2-naphtholを基質とし、**120**(42.4 mg, 0.121 mmol, 61%, pale brown solid)を得た。

Mp 109.2 – 110.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.21 (2H, brs), 8.52 (2H, s), 8.00 (2H, d, J = 8.5 Hz), 7.79 (4H, s), 7.26–7.23 (4H, m) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 137.9, 137.2, 132.2, 129.5, 128.5, 127.9, 124.0, 121.0, 110.0 ppm; IR (ATR) 3383, 3308, 3289, 1620, 1468, 1393, 1281, 1240, 1211, 1132, 1119, 1080, 860, 820, 750, 673, 662, 606, 586 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₂₀H₁₅O₄S: 351.0686; found: 351.0682.

6,6'-Sulfonylbis(1*H*-indole) (**121**)

6-Bromoindole を基質とし、**121** (45.3 mg, 0.153 mmol, 76%, pale yellow solid)を 得た。

Mp 199.3-200.0 °C; ¹H NMR (500 MHz, (CD₃)₂CO) δ 10.7 (2H, brs), 8.17 (2H, s),

7.69 (2H, d, J = 8.5 Hz), 7.59 (2H, dd, J = 9.0, 2.0 Hz), 7.57 (2H, t, J = 2.5 Hz), 6.55 (2H, s) ppm; ¹³C NMR (125 MHz, (CD₃)₂CO) δ 135.8, 135.1, 131.3, 129.3, 120.9, 117.9, 111.7, 102.1 ppm; IR (ATR) 3370, 1493, 1456, 1412, 1353, 1327, 1279, 1209, 1140, 1119, 1061, 926, 893, 810, 764, 718, 613, 530 cm⁻¹; HRMS (DART) [M+H]⁺ m/z calcd for C₁₆H₁₃N₂O₂S: 297.0692; found: 297.0699.

[1,1'-Biphenyl]-2,2'-diyl bis(trifluoromethanesulfonate) (135) 70)

2,2'-Biphenol (0.932 g, 5.00 mmol)の CH₂Cl₂溶液に pyridine (1.19 g, 15.0 mmol, 3.00 eq.)を加えた。続いて氷冷下 Tf₂O (3.10 g, 11.0 mmol, 2.20 eq.)をゆっくり滴下した後に、室温下 6 時間撹拌した。その後溶媒を留去し、残渣を昨酸エチルに溶かした。 酢酸エチル層を水及び飽和食塩水で洗い、Na₂SO₄で乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(hexane/EtOAc = 4/1)で精製し、**135** (2.19 g, 4.86 mmol, 97%, white solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.57–7.42 (8H, m) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 146.9, 132.7, 130.9, 129.5, 128.6, 121.8, 118.4 (q, ¹*J*_{C-F} = 318.3 Hz) ppm; HRMS (DART) [M+H]⁺ *m/z* calcd for C₁₄H₉F₆O₆S₂: 450.9745; found: 450.9736.

Dibenzo[b, d] thiophene 5,5-dioxide (136) ⁷¹⁾

封管に K₂S₂O₅ (66.7 mg, 0.300 mmol, 1.50 eq.)、Pd(dppp)Cl₂ (11.8 mg, 0.0200 mmol, 10.0 mol%)、**135** (90.1 mg, 0.200 mmol), TBAC (222.3 mg, 0.800 mmol, 4.00 eq.)、MeCN (3.20 mL)、*i*Pr₂NEt (51.7 mg, 0.400 mmol, 2.00 eq.),の順に加え、アルゴン雰囲気下 80 ℃で 48 h 加熱撹拌した。その後、酢酸エチルに溶かし、酢酸エチル 層を水及び飽和食塩水で洗い、Na₂SO₄で乾燥し、減圧濃縮した。残渣を分取薄層クロマトグラフィー(hexane/EtOAc = 4/1)で精製し、**136** (19.8 mg, 0.0916 mmol, 46%, white solid)を得た。

¹H NMR (400 MHz, CDCl₃) δ 7.83 (2H, d, J = 7.2 Hz), 7.80 (2H, d, J = 8.0 Hz), 7.65 (2H, t, J = 7.6 Hz), 7.53 (2H, t, J = 7.6 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 137.8, 134.0, 131.7, 130.5, 122.3, 121.7 ppm; HRMS (DART) [M+H]⁺ m/z calcd for C₁₂H₉O₂S: 217.0323; found: 217.0316.

引用文献

- 1) Wu, J. P.; Emeigh, J.; Su, X. P. Org. Lett. 2005, 7, 1223–1225.
- 2) (a) Narkevitch, V.; Megevand, S.; Schenk, K.; Vogel, P. J. Org. Chem. 2001, 66, 5080-5093. (b) Bouchez, L. C.; Dubbaka, S. R.; Turks, M.; Vogel, P. J. Org. Chem. 2004, 69, 6413-6418
- Kaneko, C.; Hayashi, R.; Fujii, H.; Yamamoto, A. Chem. Pharm. Bull. 1978, 11, 3582–3584.
- (a) Bisseret, P.; Blanchard, N. Org. Biomol. Chem. 2013, 11, 5393-5398. (b)
 Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353-359.
- 5) Janzen, E. G. J. Phys. Chem. 1972, 76, 157–162.
- 6) (a) Hill, A. E. J. Am. Chem. Soc. 1931, 53, 2598-2608. (b) Burg, A. B. J. Am. Chem. Soc. 1943, 65, 1629-1635. (c) Moede, J. A.; Curran, C. J. Am. Chem. Soc. 1949, 71, 852-858. (d) Byrd, W. E. Inorg. Chem. 1962, 1, 762-768. (e) Grundnes, J.; Christian, S. D. J. Am. Chem. Soc. 1968, 90, 2239-2245.
- (a) Kotha, S.; Khedkar, P. Chem. Rev. 2012, 112, 1650-1680. (b) Zhang, W.;
 Luo, M. Chem. Commun. 2016, 52, 2980-2983.
- Nguyen, B.; Emmett, E. J.; Willis, M. C. J. Am. Chem. Soc. 2010, 132, 16372-16373.
- 9) Ye, S.; Wu, J. Chem. Commun. 2012, 48, 10037–10039.
- 10) Li, Y.; Zheng, D.; Li, Z.; Wu, J. Org. Chem. Front. 2016, 3, 574-578.
- Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Org. Lett. 2018, 20, 1167-1170.
- Chen, Y.; Murray, P. R.; Davies, A. T.; Willis, M. C. J. Am. Chem. Soc. 2018, 140, 8781-8787.
- 13) Li, Y.; Mao, R.; Wu, J. Org. Lett. 2017, 19, 4472-4475.
- 14) Vedovato, V.; Talbot, E. A.; Willis, M. C. Org. Lett. 2018, 20, 5493-5496.
- (a) Davies, A. T.; Curto, J. M.; Bagley, S. W.; Willis, M. C. *Chem. Sci.* 2017, *8*, 1233–1237. (b) Tribby, A. L.; Rodriguez, I.; Shariffudin, S.; Ball, N. D. *J. Org. Chem.* 2017, *82*, 2294–2299.
- 16) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem. Int. Ed. 2013, 52, 12679-12683.
- Shavnya, A.; Coffey, S. B.; Smith, A. C.; Mascitti, V. Org. Lett. 2013, 15, 6226-6229.
- 18) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem. Int. Ed. 2014, 53, 10204-10208.
- Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Angew. Chem. Int. Ed. 2015, 54, 13571-13575.

- 20) Chen, Y.; Willis, M. C. Chem. Sci. 2017, 8, 3249-253.
- Mao, R.; Yuan, Z.; Zhang, R.; Ding, Y.; Fan, X.; Wu, J. Org. Chem. Front. 2016, 3, 1498–1502.
- 22) Wang, M.; Chen, S.; Jiang, X. Org. Lett. 2017, 19, 4916–4919.
- (a) Xia, H.; An, Y.; Zeng, X.; Wu, J. Chem. Commun. 2017, 53, 12548-12551.
 (b) Wang, K.; Wang, G.; Duan, G.; Xia, C. RSC Adv. 2017, 7, 51313-51317.
- 24) Wolff, N.; Char, J.; Frogneux, X.; Cantat, T. Angew. Chem. Int. Ed. 2017, 56, 5616-5619.
- 25) Lenstra, D. C.; Vedovato, V.; Flegeau, E. F.; Maydom, J.; Willis, M. C. Org. Lett. 2016, 18, 2086-2089.
- 26) Bliss, A. D.; Cline, W. K.; Hamilton, C. E.; Sweeting, O. J. J. Org. Chem. 1963, 28, 3537–3541.
- 27) Van Aller, R. T.; Scott, Jr. R. B.; Brockelbank, E. L. J. Org. Chem. 1966, 31, 2357–2365.
- 28) Chiang, Y. H.; Luloff, J. S.; Schipper, E. J. Org. Chem. 1969, 34, 2397–2401.
- 29) Takasu, N.; Oisaki, K.; Kanai, M. Org. Lett. 2013, 15, 1918–1921.
- Srivastav, M. K.; Srinivasulu, N.; Shantakumar, S. M. Heterocycl. Lett. 2013, 3, 9–16.
- Gorlushko, D. A.; Filimonov, V. D.; Krasnokutskaya, E. A.; Semenischeva, N. I.; Go, B. S.; Hwang, H. Y.; Cha, E. H.; Chi, K. W. *Tetrahedron Lett.* 2008, 49, 1080–1082.
- 32) Imbos, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 184–185.
- 33) Ursuegui, S.; Yougnia, R.; Moutin, S.; Burr, A.; Fossey, C.; Cailly, T.; Laayoun,
 A.; Laurent A.; Fabis, F. Org. Biomol. Chem. 2015, 13, 3625-3632.
- 34) Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255-4261.
- Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2014, 136, 3744–3747.
- 36) Stokes, B. J.; Opra, S. M.; Sigman, M. S. J. Am. Chem. Soc. 2012, 134, 11408-11411.
- 37) Heffernan, G. D.; Coghlan, R. D.; Manas, E. S.; McDevitt, R. E.; Li, Y.; Mahaney, P. E.; Robichaud, A. J.; Huselton, C.; Alfinito, P.; Bray, J. A.; Cosmi, S. A.; Johnston, G. H.; Kenney, T.; Koury, E.; Winneker, R. C.; Deecher, D. C.; Trybulski, E. J. *Bioorg. Med. Chem.* 2009, 17, 7802–7815.
- 38) Zhang, L.; Zhao, F.; Zheng, M.; Zhai, Y.; Liu, H. Chem. Commun. 2013, 49, 2894-2896.
- 39) Zhang, L.; Zheng, M.; Zhao, F.; Zhai, Y.; Liu, H. ACS Comb. Sci. 2014, 16,

184 - 191.

- 40) Zhang, J.; Zhang, Y.; Schnatter, W. F. K.; Herndon, J. W. Organometallics
 2006, 25, 1279-1284.
- Wagh, M. B.; Shankar, R.; Kumar, U. K. S.; Gill, C. H. Synlett 2011, 2011, 84–88.
- 42) Kotaro, Y.; Umemoto, N.; Tani K. PCT Int. Appl. WO2016068301A1. 2016.
- 43) Roberts, D.; Joule, J. A. J. Org. Chem. 1997, 62, 568-577.
- 44) Liscio, P.; Carotti, A.; Asciutti, S.; Ferri, M.; Pires, M. M.; Valloscuro, S.; Ziff, J.; Clark, N. R.; Macchiarulo, A.; Aaronson, S. A.; Pellicciari, R.; Camaioni, E. *Eur. J. Med. Chem.* 2014, *87*, 611–623.
- Lima, D. B.; Penteado, F.; Vieira, M. M.; Alves, D.; Perin, G.; Santi, C.; Lenardao, E. J. Eur. J. Org. Chem. 2017, 2017, 3830-3836.
- 46) (a) Grabowski, J. J.; Lum, R. C. J. Am. Chem. Soc. 1990, 112, 607-620. (b) Florjanczyk, Z.; Kozera-Szalkowska, A.; Nociewicz, J. Macromol. Chem. Phys. 2002, 203, 565-572. (c) Yang, H.; Li, J.; Wang, Y.; Gan, C. Food Chemistry, 2018, 245, 536-541.
- 47) Banert, K.; Heck, M.; Ihle, A.; Kronawitt, J.; Pester, T.; Shoken, T. J. Org. Chem. 2018, 83, 5138-5148.
- 48) (a) Gamelas, C. A.; Lourenço, T.; Costa, A. P.; Simplício, A. L.; Royo, B.; Romão, C. C. *Tetraheron Lett.* 2008, 49, 4708-4712. (b) Wagh, R. B.; Nagarkar, J. M. *Catal. Lett.* 2017, 147, 181-187.
- 49) Repichet, S.; Le Roux, C.; Dubac, J. Tetrahedron Lett. 1999, 40, 9233-9234.
- 50) (a) Espino, G.; Kurbangalieva, A.; Brown, J. M. Chem. Commun. 2007, 1742-1744. (b) Schoenebeck, F.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2496-2497.
- 51) Furuyama, T.; Yonehara, M.; Arimoto, S.; Kobayashi, M.; Matsumoto, Y.; Uchiyama, M. Chem. Eur. J. 2008, 14, 10348–10356.
- 52) Slocum, D. W.; Tekin, K. C.; Nguyen, Q.; Whitley, P. E.; Reinscheld, T. K.; Fouzia, B. *Tetrahedron Lett.* 2011, 52, 7141-7145.
- 53) Sun, D.; Zhao, X.; Zhang, B.; Cong, Y.; Wan, X.; Bao, M.; Zhao, X.; Li, B.; Zhang-Negrerie, D.; Dua, Y. Adv. Synth. Catal. 2018, 360, 1634–1638.
- 54) Wang, Y.; Wang, C.; Wang, Y.; Dong, L.; Sun, J. *RSC Adv.* 2015, *5*, 12354–12357.
- 55) Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett. 2011, 13, 4100-4103.
- 56) Wagh, R. B.; Nagarkar, J. M. Catal. Lett. 2017, 147, 181–187.
- 57) Tummatorn, J.; Dudley, G. B. Org. Lett. 2011, 13, 1572-1575.
- 58) Sun, C. L.; Gu, Y. F.; Huang, W. P.; Shi, Z. J. Chem. Commun. 2011, 47, 9813-9815.

- 59) Maria, E. B.; Viviana, B. D.; Martina, G.; Adriana, B. P.; Roberto, A. R. J. Org. Chem. 2010, 75, 2206–2218.
- 60) Liu, B.; Hu, L. Bioorg. Med. Chem. 2003, 11, 3889-3899.
- 61) (a) Minatti, A.; Buchwald, S. L. Org. Lett. 2008, 10, 2721–2724. (b) Sakai, N.;
 Kawana, K.; Ikeda, R.; Nakaike, Y.; Konakahara, T. Eur. J. Org. Chem. 2011, 3178–3183.
- 62) An, J.; Chang, N.; Song, L.; Jin, Y.; Ma, Y.; Chen, J.; Xiao, W. Chem. Commun. 2011, 47, 1869–1871.
- 63) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693–11712.
- 64) Mora-Radó, H.; Sotorríos, L.; Ball-Jones, M. P.; Bialy, L.; Czechtizky, W.; Méndez, M.; Gómez-Bengoa, E.; Harrity, J. P. A. *Chem. Eur. J.* 2018, 24, 9530 -9534.
- 65) Liu, N. W.; Hofman, K.; Herbert, A.; Manolikakes, G. Org. Lett. 2018, 20, 760-763.
- 66) Yang, Y.; Chen, Z.; Rao, Y. Chem. Commun. 2014, 50, 15037-15040.
- 67) Bandgar, B. P.; Bettigeri, S. V.; Phopase, J. Org. Lett. 2004, 6, 2105–2108.
- 68) Fukuda, N.; Ikemoto, T. J. Org. Chem., 2010, 75, 4629-4631.
- 69) Liang, Q.; Xing, P.; Huang, Z.; Dong, J.; K. Barry Sharpless, K. B.; Li, X.; Jiang, B. Org. Lett. 2015, 17, 1942–1945.
- 70) Hung, T. Q.; Thang, N. N.; Hoang, D. H.; Dang, T. T.; Villinger, A.; Langer, P. Org. Biomol. Chem. 2014, 12, 2596–2605.
- 71) Crich, D.; Hutton, T. K.; Ranganathan, K.; J. Org. Chem. 2005, 70, 7672–7678.

論 文 目 録

主論文

 Konishi, H.; <u>Tanaka, H.</u>; Manabe, K. Pd-Catalyzed Selective Synthesis of Cyclic Sulfonamides and Sulfinamides Using K₂S₂O₅ as a Sulfur Dioxide Surrogate. *Org. Lett.* 2017, *19*, 1578–1581.

謝辞

本研究を行うにあたり、終始御懇篤なるご指導を賜るとともに、論文をまとめるに あたり、ご校閲を頂きました静岡県立大学大学院薬食生命科学総合学府薬化学講座教 授 眞鍋 敬 先生に心より感謝の意を表しますとともに、深く御礼申し上げます。

副査として有益な御助言、御討論を賜りました静岡県立大学大学院教授 菅 敏幸 先生、教授 濱島 義隆 先生、准教授 吉村 文彦 先生に深く感謝致します。

本研究を共に遂行し、有益な御助言、御討論、御協力を賜りました静岡県立大学大 学院薬食生命科学総合学府薬化学講座講師 小西 英之 先生に深く感謝致します。

研究期間中,多くの御指導や御助言を頂きました静岡県立大学大学院薬食生命科学 総合学府薬化学講座講師 岩本 憲人 先生、助教 山口 深雪 先生に心から感謝 致します。

同時期に静岡県立大学大学院薬食生命科学総合学府薬化学講座の学生として過ごし、 苦楽を分かち合い、共に支えあった同窓の諸氏に心より御礼申し上げます。

最後に、今日までの学生生活を、様々な面で心強く支え続けていただいた両親に心 より感謝致します。

> 2019年1月 田中 寛康